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1 Introduction

Scheduling in a data gathering network is usually analyzed under the assump-
tion that the network performance is constant. For example, Choi and Rober-
tazzi [4], Moges and Robertazzi [7] proposed algorithms for partitioning the total
amount of gathered data between the network nodes, in order to minimize the
makespan. Scheduling algorithms for gathering fixed amounts of data from the
network nodes were proposed, e.g., by Berlińska [1, 2], Luo et al. [6]. However,
real communication parameters of a network may change in time. Preemptive
scheduling in data gathering networks with variable communication speed was
studied byBerlińska [3]. Thiswork considers non-preemptive scheduling in a data
gathering network with performance affected by background communications.

2 Problem formulation

We study a star data gathering network that consists ofmworker nodesP1, . . . , Pm
and a single base station P0. Each worker Pi holds dataset Di of size αi, which
has to be transferred to the base station in a single message. At most one node
can communicate with the base station at a time. The communication rate, i.e.
the inverse of speed, of the link between Pi and P0 in an otherwise unloaded
network is Ci. However, background communications required by other appli-
cations may degrade the link performance. We will be calling a link loaded if it is
used by background communications, and free in the opposite case. We assume
that the network implements QoS Percentage-Based Policing (Szigeti et al. [8]),
hence the communication rate perceived by the analyzed data gathering applica-
tion for a loaded link between Pi and P0 is δCi, for some fixed δ > 1. Thus, the
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maximum time that may be necessary to gather data from all worker nodes is
T = δ

∑m
i=1 Ciαi. For each node Pi, we are given a set of ni disjoint time intervals

[t′ij, t′′ij], where j = 1, . . . , ni and t′ij < T, in which the corresponding communica-
tion link is loaded. The total number of such intervals is n1 + · · ·+ nm = n.

The scheduling problem is to choose the sequence of datasets sent consecutively
to the base station, such that all data is transferred in the shortest possible time.

3 Complexity and algorithms

Let us first observe that transferring data of size x with communication rate C is
equivalent to sending data of size Cxwith communication rate 1. Thus, from now
on we will assume without loss of generality that Ci = 1 for i = 1, . . . ,m.

We prove that the analyzed problem is strongly NP-hard, using a pseudo-poly-
nomial transformation from the 3-PARTITIONproblem (Garey and Johnson [5]).
Then, we propose the following exponential-time dynamic programming algo-
rithm. Let τ(Di, t) be the time necessary to transfer dataset Di, starting at mo-
ment t. For each subset D ⊂ {D1, . . . ,Dm}, we compute the shortest time T(D)
in which the datasets from D can be transferred to the base station, using the
following formulas:

T(D) =

{
0 ifD = ∅,
minDi∈D{T(D \ {Di}) + τ(Di,T(D \ {Di})} ifD ̸= ∅.

Theminimumschedulemakespan isT({D1,D2, . . . ,Dm}), and the optimumdata-
set sequence can be easily tracked. This algorithm runs in O((m+ n)2m) time.

Furthermore, we propose the following three greedy heuristic algorithms, each of
which has O(m(m+ n)) complexity.

1. Algorithm gTime always chooses to send the dataset that will be transferred
in the shortest time.

2. Algorithm gRate selects the dataset that will be sent with the best average
communication rate.

3. Algorithm gSlowtime chooses the dataset for which the time when data is
transferred over a loaded link will be the shortest.

In all the three heuristics ties are broken by selecting a larger dataset. We also
implement algorithm Rnd, which constructs a random dataset sequence.
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4 Experimental results

The quality of solutions delivered by our greedy heuristics and algorithm Rndwas
tested in computational experiments. We generated two groups of tests. In the
periodic instances, for a link between Pi and P0 we selected randomly the com-
mon length of its free intervals fi ∈ [1, F], and the common length of its loaded
intervals li ∈ [1, L]. The link was loaded periodically, in intervals [t′ij, t′′ij] =
[jfi + (j − 1)li, j(fi + li)], for j = 1, 2, . . . ni. In the random tests, the lengths
of all free intervals fij ∈ [1, F], and the lengths of all loaded intervals lij ∈ [1, L] for
a link between Pi and P0 were selected independently. The analyzed values ofmax-
imum lengths of free and loaded intervals were F = 10, 30, and L = 5, 10, . . . , 50.
We used δ = 2, m = 20, and dataset sizes αi were chosen randomly from the
interval [1, 20]. For each tested setting, 100 instances were generated. Solution
quality was measured by the ratio of the makespan delivered by a given heuristic
to the optimum computed by the exact algorithm.

Table 1: Average solution quality for random instances

F = 10 F = 10 F = 10 F = 30 F = 30 F = 30
L gTime gRate gSlowtime gTime gRate gSlowtime

10 1.124 1.056 1.073 1.064 1.019 1.013
20 1.153 1.074 1.098 1.100 1.043 1.034
30 1.168 1.079 1.109 1.137 1.056 1.052

A subset of the obtained results can be found in Table 1. The complete results can
be summarized as follows.

1. As expected, the quality of solutions delivered by all heuristics deteriorates
with increasing L, and tests with big F are easier than those with small F.

2. It is easier to find good schedules for periodic instances than for the random
ones, although the problem remains stronglyNP-hard in the periodic case.

3. The greedy heuristics obtain much better results than algorithm Rnd.

4. Algorithm gTime is significantly outperformed by gRate and gSlowtime.

5. For F = 10, algorithm gRate obtains better results than gSlowtime.

6. For F = 30, the results delivered by algorithms gRate and gSlowtime are
very similar for periodic instances, and algorithm gSlowtime slightly out-
performs algorithm gRate on random tests.
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5 Future research

In the future, we want to analyze in more detail the subproblem with periodic
background communications, and design for it a dedicated polynomial-time
heuristic.
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