
The Third International Workshop on Dynamic Scheduling Problems
Adam Mickiewicz University, Poznań, July 5th – 6th, 2021

Scheduling in data gathering networks with variable
communication speed and a processing stage

Joanna Berlińska∗
Adam Mickiewicz University, Poznań, Poland

Baruch Mor
Ariel University, Ariel, Israel

Keywords: scheduling, data gathering networks, variable communication speed

1 Introduction
Data gathering is an important step of many applications running in distributed systems.
Computation results scattered on a large number of workers have to be collected for
merging and analysis. Algorithms minimizing the total time of data gathering were
proposed by Berlińska for networks with limited base station memory in [1], and for
networks with dataset release times in [3]. Luo et al. [7] and Luo et al. [8] studied
minimizing the data gathering time in networks with data compression. Berlińska and
Przybylski [4] analyzed the problem for networks with local computations. All the
mentioned articles share the assumption that the communication parameters of the
network are constant. However, in reality, the communication speed may change with
time, due to sharing the links with other users and applications, maintenance activities,
etc. Scheduling in data gathering networks with variable communication speed was
studied by Berlińska [2]. The analyzed problem was to transfer the data from the
workers to a single base station in the shortest possible time. In this work, we generalize
this problem to the case when each dataset has to be processed after being received
by the base station. We show that minimizing the total time of data gathering and
processing is stronglyNP -hard. Polynomial-time algorithms are proposed for several
special cases of the problem. For the general case, heuristic algorithms are designed and
compared by means of computational experiments.

2 Problem formulation
We study a star data gathering network consisting of m workers P1, . . . , Pm and a
single base station P0. Each worker Pi holds dataset Di of size αi, which has to be

∗Speaker, e-mail: Joanna.Berlinska@amu.edu.pl

DOI: 10.14708/isbn.978-83-951298-6-5p27-32

27

transferred to the base station for processing. At most one node can communicate
with the base station at a time. The communication rate of node Pi depends on the
corresponding link being used by other applications. We will be calling a link loaded
if it is used by background communications at a given time, and free in the opposite
case. Transferring one unit of data from Pi to P0 over a free link takes time ci, for
i = 1, . . . ,m. A loaded link becomes δ times slower, for some �xed rational δ > 1.
Thus, sending a unit of data over a loaded link betweenPi andP0 takes time δci. After
being received by the base station, dataset Di has to be processed, which takes time
aαi. At most one dataset can be processed at a time. Preemptions are allowed both in
communication and computations.

The maximum time that may be necessary to gather data from all worker nodes
is Tc = δ

∑m
i=1 ciαi. The communication speed changes are described in the follow-

ing way. For each node Pi, we are given a set of ni disjoint time intervals [t′i,j , t
′′
i,j)

(where j = 1, . . . , ni, t′′i,j < t′i,j+1 for j < ni, and t′i,ni
< Tc), in which the

corresponding communication link is loaded. The total number of such intervals is
n1 + · · ·+ nm = n.

The scheduling problem is to minimize the total time T needed to gather and
process all data. It is obvious that nothing can be gained by introducing idle times in
communication. Moreover, for a �xed communication schedule, the order of process-
ing the datasets and possible processing preemptions do not a�ect T , as long as no
unnecessary idle times appear. Therefore, we assume without loss of generality that the
communication network is never idle before transferring all data and that the datasets
are processed in the order in which they arrive at the base station.

3 Computational complexity
In this section, we analyze the computational complexity of our problem and its special
cases. Due to limited space, longer proofs are omitted.

The following complexity result is achieved by a pseudopolynomial reduction from
the stronglyNP -complete 3-Partition problem (Garey and Johnson [5]).

Proposition 1. The analyzed scheduling problem is stronglyNP -hard, even if a = 1
and ci = 1 for i = 1, . . . ,m.

In the next proposition, we show the main di�culty in constructing exact algo-
rithms for our problem.

Proposition 2. Constructing an optimum schedule for the analyzed problem may
require preempting a dataset transfer at a time when no link speed changes.

Proof. Let m = 2, c1 = c2 = 1, a = 0, α1 = α2 = 2, and let δ be an arbitrary
number greater than 1. Suppose the �rst link is loaded in interval [2, 3), and the

28 The Third International Workshop on Dynamic Scheduling Problems

second link is loaded in interval [3, 4). The optimum schedule length 4 can be achieved
only if all data are transferred over free links. For example, dataset D1 can be sent
in intervals [0, 1) and [3, 4), and D2 in interval [1, 3). It is easy to check that if no
preemption takes place before time 2, then a part of one of the datasets has to be sent
over a loaded link.

According to Proposition 2, it is not known which moments should be taken
into account as possible communication preemption points. Thus, constructing a full
search or branch-and bound algorithm for our problem is a challenge.

Note that if the communication links are never loaded, our problem reduces to
F2|pmtn|Cmax, and hence, it can be solved in O(m logm) time using Johnson’s
algorithm (Johnson [6]). If a = 0, which means there is no processing stage, then our
problem is also solvable in polynomial time, using the algorithm by Berlińska [2]. In
order to present other polynomial special cases, we prove a few structural properties.

Proposition 3. If all links are loaded in the same intervals, then the time required to
transfer a given set of datasets {Di1 , . . . , Dik}, starting at time 0, does not depend on
the order of communications.

Proof. Sending data of size α at unit communication time c is equivalent to sending
data of size cα at unit comunication time 1. Hence, if all links are loaded in the
same intervals, sending datasetsDi1 , . . . , Dik over the respective links is equivalent to
sending a single dataset of size

∑k
j=1 cijαij over a link with communication speed 1

in the free intervals and 1/δ in the loaded intervals.

Proposition 4. If all links are loaded in the same intervals, there exists an optimum
non-preemptive schedule.

Proof. Suppose that datasetDi is transferred in several pieces in an optimum schedule
Σ. We construct a new schedule Σ′ by moving all messages containing parts ofDi just
before its last piece. The other communications preceding the transfer ofDi are moved
to the left. Although the transfer times of individual datasets may change during this
process, by Proposition 3 the transfer of each dataset �nishes in Σ′ not later than in
Σ. Hence, dataset processing also �nishes in Σ′ not later than in Σ, and consequently,
Σ′ is an optimum schedule. By repeating this procedure for all datasets sent in several
messages, we arrive at a non-preemptive optimum schedule.

Using Propositions 3 and 4, and the interchange argument, we prove that the
following two special cases of our problem are polynomially solvable.

Proposition 5. If a ≤ ci for all i, and all links are loaded in the same intervals, then
the optimum schedule can be constructed inO(m logm+n) time by sending the datasets
in the order of non-increasing sizes αi.

July 5th – 6th, 2021, Poznań, Poland 29

Proposition 6. If a ≥ δci for all i, and all links are loaded in the same intervals,
then the optimum schedule can be constructed inO(m logm+ n) time by sending the
datasets in the order of non-decreasing ciαi.

4 Heuristics and computational experiments

In this section, we propose greedy heuristics running inO((m+ n)2) time. In each
of these algorithms, every time a dataset transfer completes or the speed of some link
changes, the dataset to be transferred is selected according to a given rule. Algorithm
gTime chooses the dataset whose transfer will complete in the shortest time. Heuristic
gRate selects the dataset which will be sent at the best average communication rate
(under the assumption that there will be no preemption). Algorithm gJohnson associates
with each available dataset a job consisting of two operations: sending the remaining
part of this dataset, and processing this dataset. A job is selected using Johnson’s rule
(Johnson [6]), and the corresponding dataset is transferred.

The makespan obtained by any algorithm that does not introduce communication
idle times is at most δ

∑m
i=1 ciαi + a

∑m
i=1 αi, while the optimum makespan is not

smaller than max{∑m
i=1 ciαi, a

∑m
i=1 αi}. Hence, each of our algorithms delivers a

(δ + 1)-approximation of the optimum solution.
The quality of the results delivered by the proposed heuristics was analyzed by

means of computational experiments. The number of datasets in the test instances
was m ∈ {10, 15, . . . , 50}. Dataset sizes αi were chosen randomly from the range
[1, 20]. Parameter δ was set to 2. The basic communication costs of all links were equal,
ci = c for i = 1, . . . ,m. We used c ∈ {0.5, 0.75, 1} and a = 1, thus representing
the three cases of δc ≤ a, c < a < δc and a ≤ c. The communication speed
changes were generated similarly as those in Berlińska [2]. Namely, for given values
F,L ∈ {1, 5}, the length of the �rst free interval of link iwas selected randomly from
the range [0, Fm

∑m
i=1 ciαi]. Then, the length of the �rst loaded interval was chosen

randomly from the range [0, Lm
∑m

i=1 ciαi]. The lengths of consecutive free and loaded
intervals were being selected until reaching the communication time horizon Tc. For
each analyzed setting, 100 instances were generated and solved.

As the optimum solutions for the generated instances were not known, schedule
quality was measured by the average percentage error with respect to the lower bound
LB computed as follows. Let T (i)

c be the time required to transfer datasetDi (starting
at time 0), and let Tc be the minimum time necessary for transferring all data to the
base station. Note that Tc can be computed using linear programming as described
by Berlińska [2]. Finally, let TJ be the minimum time required for transferring and
processing all datasets under the assumption that the communication links are always

30 The Third International Workshop on Dynamic Scheduling Problems

free, obtained by Johnson’s algorithm. We set

LB = max{LB1, LB2, TJ}, (1)

where
LB1 =

m
max
i=1
{T (i)

c + aαi} (2)

and
LB2 = Tc +

m
min
i=1
{aαi}. (3)

The results of our experiments lead us to the following conclusions:

1. Naturally, the obtained makespans are closest to LB when c and L are small,
and F is large.

2. In general, better results are obtained for large instances than for the smaller ones.
Indeed, a larger number of datasets gives more opportunities to avoid loaded
links, which may result both in �nding better solutions and inLB being closer
to the actual optimum.

3. When communication is slow and the links are rarely free (c = 1 and F = 1),
the best results are delivered by algorithm gRate. The reported errors are below
18% forL = 1, and below 40% forL = 5.

4. In the remaining settings, the best results are usually obtained either by gJohnson
or gTime (the only exception are the tests with c = 0.75, F = 1, L = 5 and
m ≥ 30, for which gRate is the winner). The makespans delivered by the best
of algorithms gJohnson and gTime are, on average, at most 23% from LB for
the most di�cult instances in this group (i.e., when c = 0.75, F = 1,L = 5,
m = 10), but less than 3% fromLB for all tests with c = 0.5.

5 Future research

Future research should include the complexity analysis of the special case when all links
are loaded in the same intervals, but the relations between ci and a are arbitrary, and
the case when a ≥ δci for all i, but di�erent links are loaded in di�erent time intervals.

Acknowledgements

The research of the �rst author was partially supported by the National Science Centre,
Poland, grant 2016/23/D/ST6/00410.

July 5th – 6th, 2021, Poznań, Poland 31

References
[1] J. Berlińska, Heuristics for scheduling data gathering with limited base station

memory, Annals of Operations Research, 285 (2020), 149–159, doi: 10.1007/

s10479-019-03185-3.

[2] J. Berlińska, Scheduling in data gathering networks with background com-
munications, Journal of Scheduling, 23 (2020), 681–691, doi: 10.1007/

s10951-020-00648-5.

[3] J. Berlińska, Makespan minimization in data gathering networks with dataset
release times, Lecture Notes in Computer Science, 12044 (2020), 230–241, doi: 10.

1007/978-3-030-43222-5_20.

[4] J. Berlińska, B. Przybylski, Scheduling for gathering multitype data with local
computations, European Journal of Operational Research, 2021, doi: 10.1016/

j.ejor.2021.01.043.

[5] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-completeness, W. H. Freeman, San Francisco, 1979.

[6] S. M. Johnson, Optimal two- and three-stage production schedules with setup
times included, Naval Research Logistics Quarterly, 1 (1954), 61–68, doi: 10.

1002/nav.3800010110.

[7] W. Luo, Y. Xu, B. Gu, W. Tong, R. Goebel, G. Lin, Algorithms for communication
scheduling in data gathering network with data compression, Algorithmica, 80
(2018), 3158–3176, doi: 10.1007/s00453-017-0373-6.

[8] W. Luo, B. Gu, G. Lin, Communication scheduling in data gathering networks
of heterogeneous sensors with data compression: Algorithms and empirical
experiments, European Journal of Operational Research, 271 (2018), 462–473,
doi: 10.1016/j.ejor.2018.05.047.

32 The Third International Workshop on Dynamic Scheduling Problems

