
Scheduling data gathering with limited base station

memory

Joanna Berli«ska

Faculty of Mathematics and Computer Science, Adam Mickiewicz University in Pozna«,
Umultowska 87, 61-614 Pozna«, Poland

Joanna.Berlinska@amu.edu.pl

Keywords: scheduling, data gathering network, limited memory, �ow shop.

1 Introduction

Data gathering networks are widely used in many types of contemporary applications.
Distributed computing introduces the need for collecting the results obtained by remote
workers. Data gathering wireless sensor networks �nd environmental, military, health and
home applications (Akyildiz et al. 2002). Scheduling algorithms for data gathering net-
works were proposed, e.g., by Moges and Robertazzi (2006), Choi and Robertazzi (2008),
Berli«ska (2014) and Berli«ska (2015).

In this work, we analyze gathering data in a network with limited base station memory.
A dataset being received or processed by the base station occupies a block of memory of
given size. The total size of coexisting memory blocks cannot exceed the base station bu�er
capacity. Our goal is to gather and process all data within the minimum possible time.

2 Problem formulation and complexity

We study a data gathering network consisting of m identical worker nodes P1, . . . , Pm

and a single base station. Node Pi has to transfer dataset Di of size αi directly to the base
station. When dataset Di starts being sent, a memory block of size αi is allocated at the
base station. The base station has limited memory of size B ≥ maxmi=1{αi}. The transfer of
dataset Di may start only if the amount of available memory is at least αi. Sending dataset
Di takes time Cαi, where C is the network communication rate (inverse of speed). After
dataset Di is transferred, it has to be processed by the base station. This takes time Aαi,
where A is the base station computation rate. Datasets are processed in the order in which
they were received. As soon as processing a dataset �nishes, the corresponding memory
block is released. It is assumed that both communication and computation on a dataset
are non-preemptive. The base station can communicate with at most one node at a time
and it can process at most one dataset at a time. The scheduling problem is to organize
dataset transfers so that the total data gathering and processing time is minimized.

We prove that the above problem is strongly NP-hard even if A = C = 1, using a
pseudopolynomial reduction from the bin packing problem (Garey and Johnson 1979).

3 Related work

As only one node can communicate with the base station at a time, our data gathering
network can be seen as a two-machine �ow shop, where the communication network is the
�rst machine, and the base station is the second machine. Job i consists of two operations:
sending and processing dataset Di, and requires αi units of base station memory resource.
Thus, we solve a resource-constrained �ow shop scheduling problem (Bªa»ewicz et al. 1983).
It may seem similar to two-machine �ow shop scheduling with limited bu�er storage (see,

42

e.g., Leisten (1990)), but there are substantial di�erences between them. In a �ow shop
with limited bu�er storage, the bu�er can hold a �xed number of jobs, and a job is stored
in the bu�er when it has already been processed on the �rst machine but not yet started
on the second machine. In our problem, the bu�er can hold a �xed amount of data (for
example, only one big dataset, but up to three small datasets), and the bu�er is occupied
by a dataset not only between, but also during its transfer and processing.

Lin and Huang (2006) proposed a relocation problem with a second working crew for
resource recycling. Each job was executed on two machines in a �ow shop style. The i-th
job required αi units of a resource, and returned βi units of this resource on completion.
The goal was to minimize the makespan while not exceeding the available amount of the
resource. This problem, denoted by F2|rp|Cmax, was shown to be strongly NP-hard, and
heuristic algorithms for solving it were proposed. The problem was further analyzed by
Cheng et al. (2012), who formulated it as an integer linear program. Complexity results
for a number of special cases of the problem were also presented.

Our data gathering scheduling problem is equivalent to yet another special case of
problem F2|rp|Cmax, which can be denoted by F2|rp, pi = Cαi, qi = Aαi, βi = αi|Cmax,
and was not studied in the earlier literature.

4 Algorithms

In our problem, a schedule is determined by the order in which the datasets are transfer-
red to the base station. Each dataset is sent without unnecessary delay, as soon as su�cient
amount of memory is available.

We �rst observe the following symmetry property. Suppose that A = kC, where k ≥ 1,
and Σ is a schedule of length T for given values of B and (αi)

m
i=1. Then, by reversing

schedule Σ, we obtain a schedule of length T for the same values of B and (αi)
m
i=1, com-

munication rate C ′ = kC and computation rate A′ = C. In consequence, we can assume
without loss of generality that A ≥ C.

We propose three �simple� heuristics. Algorithm Inc sorts the datasets in the order of
increasing sizes. Since A ≥ C, this is the order that would be returned by the Johnson's
algorithm for problem F2||Cmax (Johnson 1954), and hence, algorithm Inc delivers opti-
mum solutions if the memory limit B is big enough. Algorithm Alter starts with sending
the smallest dataset, then the greatest one, the second smallest, the second greatest, etc.,
thus alternating big and small datasets. Finally, algorithm Rnd transfers the datasets in
a random order. This algorithm will be used to verify the quality of the results delivered
by the remaining heuristics.

The second group of algorithms are �advanced� heuristics IncLocal, AlterLocal and
RndLocal. Each of them starts with generating a schedule using the corresponding simple
heuristic, and then applies the following local search procedure. For each pair of datasets, we
check if swapping their positions in the current schedule leads to decreasing the makespan.
The swap that results in the shortest schedule is executed, and the search is continued
until no further improvement is possible.

Note that our algorithms cover the three heuristics H1, H2, H3 proposed by Lin and
Huang (2006) for solving problem F2|rp|Cmax. In our special case, both H1 and H2 return
the same results as IncLocal, and H3 is equivalent to RndLocal.

To �nish this section, let us observe that the length of a schedule obtained for an
arbitrary dataset sequence does not exceed (A + C)

∑m
i=1 αi, and A

∑m
i=1 αi is a lower

bound on a schedule length. Thus, the approximation ratio of any algorithm for solving
our problem is at most 1 + C/A. Hence, we can say that our problem becomes easier to
solve when A gets large in comparison to C.

43

5 Experimental results

In this section, we compare the quality of the solutions and the computational costs
of the proposed heuristics. The algorithms were implemented in C++ and run on an Intel
Core i5-2500K CPU @ 3.30 GHz with 6GB RAM. The test instances were constructed as
follows. The communication rate was C = 1 and the computation rate was A ∈ {1, 2, 5, 10}.
We generated �small� tests with m = 10 and �big� tests with m = 100. The dataset sizes
αi were chosen randomly from the interval [1, 2]. For a given set of αi, we computed the
minimum amount of memory that allows to hold more than one dataset in the bu�er,
Bmin = mini 6=j{αi + αj}. Then, the memory limit was set to B = δBBmin, where δB =
1 + i/10, for i = 1, 2, . . . , 7. For each triple of m, A and δB values, 30 instances were
generated. Due to limited space, we report here only on a small subset of the obtained
results.

The makespans returned by the heuristics for the small tests were compared to the
optimum values computed using the ILP formulation from Cheng et al. (2012). It turns
out that the local search procedure is very e�ective, as for each tested setting, the average
relative errors of all the advanced heuristics were below 0.5%. The average relative errors of
the simple algorithms were between 3% and 20% for the most di�cult tests (with A = 1).

Constructing optimum solutions for instances with m = 100 was not possible because
of the exponential complexity of the exact algorithm. Therefore, the obtained makespans
were compared to the lower bound computed by disregarding the memory limit and solving
problem F2||Cmax for given A and (αi)

m
i=1. The results are summarized in Table 1.

The solutions obtained by the advanced algorithms are much better than those of the
simple algorithms. The di�erences between algorithms IncLocal and AlterLocal are very
small, while RndLocal performs slightly worse. However, it is clear that for δB = 1.2 the
best choice among the simple heuristics is the Inc algorithm, and the results of algorithm
Alter are even worse than those of the random algorithm. For δB = 1.5 we have the reverse
situation: algorithm Alter is the winner, and Inc is even worse than Rnd if A > 1.

Table 1. Average relative distance of the solutions from the lower bound, for m = 100.

A δB Inc Alter Rnd IncLocal AlterLocal RndLocal

1 1.2 0.814 0.974 0.907 0.702 0.711 0.727
1.5 0.557 0.463 0.586 0.216 0.211 0.245

2 1.2 0.411 0.495 0.456 0.340 0.347 0.361
1.5 0.262 0.082 0.231 0.015 0.015 0.039

5 1.2 0.166 0.198 0.183 0.135 0.137 0.143
1.5 0.109 0.047 0.097 0.009 0.010 0.017

10 1.2 0.084 0.099 0.093 0.070 0.072 0.075
1.5 0.055 0.020 0.049 0.005 0.004 0.009

We report on the execution times of the algorithms in Table 2. Here we group the results
for all tested values of A together. The running time of all simple algorithms is very short,
and the advanced algorithms are �ve orders of magnitude slower. The slowest heuristic is
RndLocal, and the relation between IncLocal and AlterLocal depends on δB . For δB = 1.2,
algorithm IncLocal is much faster than AlterLocal, and for δB = 1.5 we have the opposite
situation. Thus, conforming the (initial) dataset sequence to δB value leads to obtaining
better schedules in the case of the simple heuristics, and to shorter execution time in the
case of the advanced heuristics.

44

Table 2. Average algorithm running time (in seconds), for m = 100.

δB Inc Alter Rnd IncLocal AlterLocal RndLocal

1.2 3.18E−3 2.90E−3 3.33E−3 2.08E+2 3.11E+2 3.89E+2
1.5 2.68E−3 2.58E−3 2.40E−3 3.11E+2 2.06E+2 6.30E+2

6 Conclusions

In this work, we analyzed scheduling data gathering with limited base station memory.
As we showed that this problem is strongly NP-hard, groups of simple and advanced
heuristics were proposed. Their performance was tested in computational experiments.
The simple algorithms are very fast, but the results they obtain are not very good in most
cases. The advanced heuristics produce high quality schedules, but their execution times
are long. We showed that sorting datasets according to their sizes is a good idea if the base
station memory limit is rather small. If the base station bu�er is big enough to hold the
smallest and the biggest dataset together, then alternating small and big datasets allows
to obtain better results.

Acknowledgements

This research has been partially supported by the National Science Centre, Poland,
grant 2016/23/D/ST6/00410.

References

Akyildiz I.F., W. Su, Y. Sankarasubramaniam and E. Cayirci, 2002, �Wireless sensor networks: a
survey�, Computer Networks, Vol. 38, pp. 393-422.

Berli«ska J., 2014, �Communication scheduling in data gathering networks with limited memory�,
Applied Mathematics and Computation, Vol. 235, pp. 530-537.

Berli«ska J., 2015, �Scheduling for data gathering networks with data compression�, European
Journal of Operational Research, Vol. 246, pp. 744-749.

Bªa»ewicz J., J.K. Lenstra and A.H.G. Rinnooy Kan, 1983, �Scheduling subject to resource con-
straints: classi�cation and complexity�, Discrete Applied Mathematics, Vol. 5, pp. 11-24.

Cheng T.C.E., B.M.T. Lin and H.L. Huang, 2012, �Resource-constrained �owshop scheduling with
separate resource recycling operations�, Computers & Operations Research, Vol. 39, pp. 1206-
1212.

Choi K., T.G. Robertazzi, 2008, �Divisible Load Scheduling in Wireless Sensor Networks with
Information Utility�, In: IEEE International Performance Computing and Communications

Conference 2008: IPCCC 2008, pp. 9-17.
Garey M.R., D.S. Johnson, 1979. �Computers and intractability: A guide to the theory of NP-

completeness�, Freeman, San Francisco.
Johnson S.M., 1954, �Optimal two- and three-stage production schedules with setup times inclu-

ded�, Naval Research Logistics Quarterly, Vol. 1, pp. 61-68.
Leisten R., 1990, �Flowshop sequencing problems with limited bu�er storage�, International Jour-

nal of Production Research, Vol. 28, pp. 2085-2100.
Lin B.M.T., H.L. Huang, 2006, �On the relocation problem with a second working crew for resource

recycling�, International Journal of Systems Science, Vol. 37, pp. 27-34.
Moges M., T.G. Robertazzi, 2006, �Wireless Sensor Networks: Scheduling for Measurement and

Data Reporting�, IEEE Transactions on Aerospace and Electronic Systems, Vol. 42, pp. 327-
340.

45

