
Scheduling to minimize maximum lateness in tree data

gathering networks

Joanna Berli«ska

Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Pozna«, Poland

Joanna.Berlinska@amu.edu.pl

Keywords: scheduling, data gathering network, maximum lateness, hybrid �ow shop.

1 Introduction

Scheduling for data gathering has been attracting increasing attention in recent years.
Choi and Robertazzi (2008) and Moges and Robertazzi (2006) constructed algorithms for
partitioning the total amount of measurements between the nodes of a wireless sensor
network in order to gather the data in the shortest possible time. Algorithms minimizing
schedule length were also proposed for networks with data compression (Berli«ska 2015, Luo
et al. 2018), and with limited memory (Berli«ska 2020). Scheduling with maximum lateness
criterion in star networks was studied by Berli«ska (2018), Berli«ska (2019).

In this paper, we analyze minimizing maximum lateness in 2-level tree networks. The
data gathering application consists of three partially overlapping stages. First, each of the
leaf nodes of the network has to transfer acquired data to an appropriate intermediate
node. In the second stage, datasets are preprocessed by the intermediate nodes. Finally,
they are transferred from the intermediate nodes to a single base station. It is assumed
that an intermediate node can receive at most one dataset at a time, and it can process
at most one dataset at a time. Therefore, a subnetwork consisting of an intermediate node
and all leaves that communicate with it, can be seen as a sequence of two machines working
in a �ow shop mode. The base station can also receive at most one dataset at a time, and
hence, the third stage consists in executing a sequence of jobs on a single machine. Thus,
our network is a three-machine hybrid �ow shop with m dedicated machines in the �rst
stage and the second stage, and one machine in the last stage. Hybrid �ow shops with
dedicated machines were studied mostly in two-machine setting (see the survey Hwang
and Lin (2018)). Three-machine hybrid �ow shop with one machine in the �rst and the
third stage, and two dedicated machines in the second stage, was studied by Riane et al.
(1998). The case of two dedicated machines in the last stage, and one machine in the �rst
and the second stage was analyzed by Bedhief and Dridi (2019). To our best knowledge,
three-machine hybrid �ow shops with multiple dedicated machines in more than one stage
were not studied in the earlier literature.

2 Problem formulation and complexity

The data gathering network consists of n leaf nodes, m intermediate nodes and a single
base station. Intermediate node Pj (1 ≤ j ≤ m) collects data from nj leaf nodes Pjk,
where k = 1, . . . , nj . Thus, n1 + . . .+ nm = n. Leaf node Pjk acquires dataset Djk of size
αjk at time rjk. The due date for receiving this dataset at the base station is denoted
by djk. The time necessary to transfer one unit of data is denoted by C. Thus, dataset
Djk is sent from Pjk to Pj in time Cαjk. After receiving the whole dataset, node Pj has
to preprocess it, which takes time Aαjk. During this process, the dataset size changes to
γαjk, where γ is a given application parameter. Afterwards, the dataset has to be sent to
the base station, which takes time Cγαjk. Each node can receive at most one dataset at

a time. An intermediate node can simultaneously receive one dataset, preprocess another
dataset, and send yet another dataset to the base station. Preemptions are allowed both
in communication and computation.

Let Tjk be the time when dataset Djk arrives at the base station. The lateness of Djk

is Ljk = Tjk − djk. Our goal is to organize dataset transfer and processing so that the
maximum lateness Lmax = maxmj=1 max

nj

k=1{Ljk} is minimized.
When m = 1 and γ = 0, our scheduling problem becomes equivalent to minimizing the

maximum dataset lateness in a star network with datasets processed at the base station,
which was proved to be strongly NP-hard by Berli«ska (2019). Thus, the problem analyzed
in this work is also strongly NP-hard.

3 Algorithms

In this section, we propose heuristic algorithms for solving our scheduling problem.
Note that if a schedule for the �rst two stages of the application is �xed, an optimum
schedule for the last stage can be easily found. Indeed, for each dataset Djk, the time
r′jk when it becomes available for transfer to the base station is known, and it remains
to solve an instance of problem 1|rj , pmtn|Lmax, which can be done using the preemptive
earliest due date �rst rule (Horn 1974). Therefore, our algorithms concentrate on building
a good schedule for transferring datasets to intermediate nodes and preprocessing them,
separately for each of the m subnetworks.

Firstly, we implement an exponential algorithm BB, which uses the branch-and-bound
technique to obtain a schedule which minimizes the maximum dataset lateness after two
stages of the application. A detailed description of this algorithm can be found in Berli«ska
(2019). Note that a partial schedule that minimizes the maximum lateness after the �rst
two stages, does not necessarily result in the optimum schedule for the whole application.
Thus, although algorithm BB uses an enumerative approach, it does not guarantee �nding
optimum solutions.

Secondly, we propose algorithms that build a communication schedule �rst, and after
�xing it, construct a schedule for dataset preprocessing. For each of these two stages, we
use one of the following rules:

� FIFO: choose datasets in the order in which they are released (no preemptions);
� EDD: select an available dataset with the smallest due date (possible preemptions);
� SRT: choose an available dataset with the shortest remaining transfer/preprocessing
time (possible preemptions).

An algorithm which uses Rule1 for dataset transfer, and Rule2 for dataset preprocessing,
will be called Rule1-Rule2. We study all possible combinations of the above rules, resulting
in 9 di�erent algorithms. Each of these algorithms �nds a schedule for the j-th subnetwork
in O(nj log nj) time, for j = 1, . . . ,m. After �xing subnetwork schedules, a schedule for
sending datasets to the base station is computed in O(n log n) time. Since n = n1+. . .+nm,
the total algorithm running time is also O(n log n).

4 Experimental results

In this section, we compare the performance of the proposed heuristics. The algorithms
were implemented in C++ and run an Intel Core i5-3570K CPU @ 3.40 GHz with 8GB
RAM. Due to limited space, we report here only on a subset of the obtained results. In the
experiments presented here, the network consisted of m = 5 subnetworks, containing ni =
10 leaf nodes each. Note that if m > 1, A is small in comparison to C, and γ is large, then

the third stage of the application dominates the whole schedule, i.e. it takes a signi�cantly
longer time than each of the �rst two stages, and hence, it has the largest impact on the
obtained maximum lateness. Since the last stage is always scheduled optimally, building
good solutions is easy in this case. Therefore, in order to construct demanding instances, we
used C = 1, A ∈ {1, 2, 3} and γ ∈ {0.01, 0.1, 0.5}. Dataset release times rjk were generated
separately for each subnetwork j as follows. The release time of the �rst dataset was rj1 = 0.
The remaining release times were computed from the formula rjk = rj,k−1 + δjk, with δjk
chosen randomly from interval [1, 10], for each j and k independently. Due dates djk were
selected randomly from interval [0, 100], and dataset sizes αjk from interval [1, 15]. For each
analyzed combination of parameters A and γ, 30 instances were generated and solved.

Since the optimum solutions for the test instances were not known, in order to assess
the schedule quality we computed a lower bound

LB = max
j=1,...,m

max
k=1,...,nj

{rjk + (C(1 + γ) +A)αjk − djk}. (1)

Measuring schedule quality for the Lmax criterion may be problematic, as the optimum
value can be positive, zero or negative, which precludes using relative measures. Therefore,
we measure solution quality by the di�erence between the maximum lateness delivered by
a given algorithm and the lower bound LB.

Table 1. Average distance of the solutions from the lower bound.

γ = 0.01 γ = 0.1 γ = 0.5
Algorithm A = 1 A = 2 A = 3 A = 1 A = 2 A = 3 A = 1 A = 2 A = 3

BB 2.201 42.858 119.080 1.313 39.883 124.100 49.900 59.550 124.400

FIFO-FIFO 32.784 101.835 171.999 34.127 99.437 180.550 50.450 97.783 179.500

FIFO-EDD 28.299 44.493 120.244 29.027 43.243 125.040 50.350 59.550 125.017

FIFO-SRT 31.901 98.147 173.014 31.463 95.050 172.930 51.150 95.533 177.200

EDD-FIFO 5.731 52.349 124.176 6.183 48.993 129.527 51.000 54.050 128.483

EDD-EDD 3.602 49.125 123.044 3.197 46.710 129.527 51.217 57.633 127.617

EDD-SRT 18.915 95.982 172.949 19.417 91.010 173.167 52.917 95.183 176.383

SRT-FIFO 30.856 97.945 172.479 28.157 94.933 177.153 50.883 97.250 178.517

SRT-EDD 27.891 48.163 120.943 25.143 45.720 127.367 50.633 58.750 126.633

SRT-SRT 31.324 100.948 173.217 30.500 95.207 175.857 51.467 94.933 175.633

The average quality of the obtained solutions is presented in Table 1. The distances from
LB obtained by all algorithms grow with A. The main reason for this is that the distance
between LB and the actual optimum increases with A. Algorithm BB delivers the best
results for all settings except A = 2, γ = 0.05. However, BB has high computational costs.
Its average running time ranged from about 7 seconds for A = 1, γ = 0.5 to approximately
2075 seconds for A = 3, γ = 0.5, while the remaining heuristics needed about 0.004 seconds
in all analyzed settings. All algorithms return similar results when A = 1 and γ = 0.5.
This illustrates the mentioned above fact that the combination of small A and big γ leads
to easy instances.

Let us now compare the performance of the fast heuristics in the remaining settings.
When A = 1 and γ ∈ {0.01, 0.1}, algorithm EDD-EDD is the winner. When A = 3, the
best results are obtained by FIFO-EDD, for all values of γ. For tests with A = 2, the
best results are returned by algorithm FIFO-EDD when γ ∈ {0.01, 0.1}, and by EDD-
FIFO when γ = 0.5. It seems that the choice between the EDD and FIFO rules should

be based on the expected durations of the three stages of our application. When A = 2
and γ ∈ {0.01, 0.1}, or when A = 3, the second stage dominates, and the best strategy
is to use FIFO in the �rst stage. For A = 2 and γ = 0.5, the third stage is the longest
(because m = 5), and FIFO should be applied in the second stage. In the remaining cases,
the best strategy is to use only EDD rule. We infer that if stage i dominates the schedule
(i = 2, 3), then the FIFO rule should be applied in stage i− 1 in order to pass some data
to stage i as soon as possible, and EDD should be used in the remaining stages. If there is
no dominating stage, algorithm EDD-EDD seems the best choice.

5 Conclusions

In this work, we analyzed minimizing maximum lateness in tree data gathering net-
works. As the problem is computationally hard, we proposed several heuristic algorithms.
Computational experiments showed that algorithm BB usually delivers the best results, but
at a high computational cost. Good schedules can be obtained in polynomial time using an
adequate combination of EDD and FIFO rules. Future research may include investigating
theoretical performance guarantees of the proposed algorithms.

Acknowledgements

This research was partially supported by the National Science Centre, Poland, grant
2016/23/D/ST6/00410.

References

Bedhief, A., N. Dridi, 2019, �Minimizing makespan in a three-stage hybrid �ow shop with dedicated

machines�, International Journal of Industrial Engineering Computations, Vol. 10, pp. 161-

176.
Berli«ska J., 2015, �Scheduling for data gathering networks with data compression�, European

Journal of Operational Research, Vol. 246, pp. 744-749.
Berli«ska J., 2018, �Scheduling Data Gathering with Maximum Lateness Objective�, In: R.

Wyrzykowski et al., Parallel Processing and Applied Mathematics: 12th International Con-

ference PPAM 2017, Part II, LNCS 10778, pp. 135-144, Springer, Cham.
Berli«ska J., 2019, �Scheduling in a data gathering network to minimize maximum lateness�, In:

B. Fortz, M. Labbé, Operations Research Proceedings 2018, pp. 453-458, Springer, Cham.
Berli«ska J., 2020, �Heuristics for scheduling data gathering with limited base station memory�,

Annals of Operations Research, Vol. 285, pp. 149-159.
Choi K., T.G. Robertazzi, 2008, �Divisible Load Scheduling in Wireless Sensor Networks with

Information Utility�, In: IEEE International Performance Computing and Communications

Conference 2008: IPCCC 2008, pp. 9-17.
Horn, W.A., 1974, �Some simple scheduling algorithms�, Naval Research Logistics Quarterly, Vol.

21, pp. 177-185.
Hwang, F.J., B.M.T. Lin, 2018, �Survey and extensions of manufacturing models in two-stage

�exible �ow shops with de dicated machines�, Computers and Operations Research, Vol. 98,

pp. 103-112.
Luo, W., Y. Xu, B. Gu, W. Tong, R. Goebel, G. Lin, 2018, �Algorithms for Communication

Scheduling in Data Gathering Network with Data Compression�, Algorithmica, Vol. 80, pp.

3158-3176.
Moges M., T.G. Robertazzi, 2006, �Wireless Sensor Networks: Scheduling for Measurement and

Data Reporting�, IEEE Transactions on Aerospace and Electronic Systems, Vol. 42, pp. 327-

340.
Riane, F., A. Artiba, S.E. Elmaghraby, 1998, �A hybrid three-stage �owshop problem: E�cient

heuristics to minimize makespan�, European Journal of Operational Research, Vol. 109, pp.

321-329.

