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Poznań, Poland

Abstract

Algorithms for mitigating imbalance of the MapReduce computa-
tions are considered in this paper. MapReduce is a new paradigm
of processing big datasets in parallel. A MapReduce job consists of
two phases of mapping and reducing. In the latter phase computation
completion times may become imbalanced due to unequal distribution
of the data. We propose four algorithms for balancing computational
effort in the reducing phase. The static algorithm improves the load
distribution by constructing a few times more load partitions than
the number of reducing computers. The multi-dynamic algorithm
performs many load balancing operations during the reducing phase,
whereas the single-dynamic algorithm uses simulation to balance the
load in a single step in the reducing phase. The mixed algorithm works
both before and during the reducing phase. The performance of the
algorithms is evaluated and compared by simulation. We conclude
that the distribution of keys in the input data and the complexity of
sorting by the reducers determine which algorithm is best to use.

Keywords: MapReduce, Load balancing, Divisible loads, Scheduling,
Performance evaluation
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1 Introduction

MapReduce is a paradigm for processing big volumes of data in parallel
[10, 21, 24]. A MapReduce job consists of two processing steps: mapping
and reducing. We will call the computers executing the first phase mappers,
and the second phase reducers. Let us assume that there are m mappers
and r reducers. A MapReduce job is supervised by a master machine. The
whole volume of initial input data is divided into many equal-size blocks
called splits processed in parallel in the map phase. Mappers read the splits
and transform them into a set of intermediate (key1, value1) pairs using a
user-defined Map function. We will call the set of key-value pairs with equal
key1 a cluster. On each mapper the pairs are scattered to local output files
so that (key1, value1) pairs with equal key1 land in the same file. Let us
assume that the output from the mappers is divided into R partitions. In
general the number of partitions R is unrelated to the number of reducers
r. The target output file is usually identified using a function of the form
hash(key1) mod R. Thus, basically Map function partitions the space of key1
into R subspaces. At the end of mapping phase each mapper holds R local
output files. When all mappers finish computation, then the MapReduce job
progresses to the next phase. In a communication stage called shuffle the
reducers pull the files from the mappers. All the key-value pairs copied to
one reducer are grouped together by key1 using, e.g., external sort and are
processed to produce a set of new (key2, value2) pairs. A cluster of some key1
is processed by one reducer. The sets of key-value pairs (key2, value2) created
by the reducers are stored in the distributed file system for subsequent use,
possibly by yet another MapReduce job. As an example of a MapReduce
application consider analysis of the geographic trends in queries submitted
to a search engine. Mappers read the submitted phrases phrase and IP
addresses of the computers from the logs of the web-servers, translate the IP
addresses into country locations country and emit a set of (country, phrase)
key-value pairs. The pairs are partitioned and routed to reducers on the
basis of country in a (country, phrase) key-value pair. Each reducer sorts
its set of key-value pairs by country and produces a new key-value pair
(country, stats) where stats is an object comprising statistics on a given
country including, e.g., the total number of queries, a histogram for a few
most popular phrases, etc. If stats comprises a list of phrases submitted from
a given country then it can be a subject of another MapReduce to compile a
detailed phrase analysis for each country. Similar applications of MapReduce
can be found in text, log, measurement, image processing, machine learning,
and simulation [10, 18, 21, 24]. Recently MapReduce is becoming an element
of the so-called NoSQL databases [14, 22].
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Both map and reduce are blocking operations despite relaxations built
in MapReduce implementations [18, 24]. Blocking means that a MapRe-
duce job may proceed from mapping to reducing only if all mappers have
finished. This is especially required by reducers which must first sort all
the output from the mappers before proceeding to any further computation.
Analogously, MapReduce completes only when all reducers finish. Any im-
balance of completion times in the above operations degrades MapReduce
performance. A dispersion of completion times may arise in many ways. For
example:

1. A non-uniform distribution of keys key1 between the splits results in
unequal sizes of files created by different mappers, and imbalance in
the shuffle phase.

2. Different frequencies of key1s result in unequal file sizes in the shuffle
phase and unequal workloads in reducing.

3. Keys are not equally easy to process.

4. Volatility of the environment: speeds of computers may change as a
result of running background services, cluster sharing, degradation of
the hardware, maintenance processes, applying energy-saving modes,
etc. Speed of communication may change for similar reasons.

Usually mapping phase is relatively well protected against the computa-
tion time imbalance because splits have small size and each mapper is as-
signed splits in many iterations here called waves [16, 24]. A mapper which
computes faster gets more splits. The fact that splits are processed in many
waves has randomizing effect and e.g. unequal distribution of keys between
splits has little effect on load imbalance. Consequently, granularity of map-
ping imbalance can be considered small. Implementations of MapReduce
have provisions for a failure or prolonged processing of one split in mapping
or one partition in reducing. Namely, if such an operation fails or progresses
too slowly, then it can be re-executed speculatively. This resiliency comes
at the cost of additional computation, communication and storage. Unfor-
tunately, the distribution of keys and hence sizes of partitions submitted to
reducers are application- and data-dependent and are hard to predict. In-
evitably some reducers get more data to process than the others. Such a
situation of unequal partition sizes is called data or partition skew. Specu-
lative re-execution is not helpful here because a partition with skewed data
will result in exactly the same prolonged computation on another computer.
Since it is hard to balance reducers work in advance (see more details in the
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next section), reducing computations must be re-balanced online. This paper
is dedicated to algorithms mitigating partition skew in the reduce phase of
MapReduce. The contribution of this paper is as follows:

• Four algorithms are proposed to mitigate partition skew in MapReduce
computations: static, multi-dynamic, single-dynamic and mixed.

• For the purpose of comparing the algorithms a performance model of
MapReduce computations is proposed.

• The above algorithms are evaluated by simulation against changes of
various system parameters for two reducing complexity functions: lin-
ear and loglinear (a.k.a. linearithmic).

• Algorithm performance sensitivity to the selection of control parame-
ters is evaluated.

• Robustness of the algorithms to the volatile environment performance
is tested.

The remaining part of this paper is organized as follows. In the next
section related publications are outlined. In Section 3 scheduling and perfor-
mance model of MapReduce computations is introduced. Section 4 comprises
algorithms designed to counteract load-imbalance in the reducing phase of
MapReduce computation. The efficacies of these algorithms are evaluated in
Section 5. The last section is dedicated to conclusions. The notation used
throughout the paper is summarized in Table 1.

2 Related Work

MapReduce has been introduced in the seminal paper [10]. However, Hadoop
[2] is more known currently as a MapReduce implementation. Hadoop is a
set of open-source software modules for distributed processing of big datasets
on parallel clusters. A detailed description of MapReduce in Hadoop can be
found in [24]. Examples of MapReduce applications can be found, e.g., in
[8, 10, 18, 21, 24]. Advantages and limitations as well as possible development
strategies for MapReduce are discussed in [18].

Logs from MapReduce applications were analyzed in [16]. It has been
found that in most cases mappers receive splits in many waves (iterations),
which eases load-balancing of mappers. On the contrary, a vast majority
of MapReduce jobs had fewer than 2 reduce waves. It can be speculated
that most of the users follow the recommendation (e.g. in [24]) that the
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Table 1: Summary of notation.
ared reducer computing rate in seconds per byte;
asort reducer sorting rate in seconds per byte;
amaster the master computing rate in seconds per byte;
A computing rate of the mapping phase in seconds per byte;
C communication rate for reading the data by the reducers;
∆ spread of key distribution (see Section 5);
δ spread of sorting and reducing rate changes (see Section 5.3);
ε size of master messages;
γ result multiplicity fraction;
l bisection width limit, expressed in parallel channels;
k number of sub-partitions in the static algorithm;
k1, k2 number of sub-partitions in the static and dynamic phases

of the mixed algorithm;
κi value of the ith key;
m number of mappers (computers);
Ω space of keys (the set of key1 values);
Πi partition i, a set of clusters;
si size of partition i = 0, . . . , R− 1;
R number of reduce partitions;
r number of reducers (computers);
σi size of κi cluster in bytes;
T (z) reducer complexity function in partition size z; we consider

either linear T (z) = (asort + ared)z, or loglinear T (z) =
asortz log2 z + aredz

X fraction of keys processed in the static phase of the mixed
algorithm;

V initial load size, in bytes;

number of partitions should be close to the number of cluster computers.
Thus, r ≈ R, which exacerbates inequalities in data partitioning for reduc-
ers. While most of the jobs have relatively equal mapping task runtimes and
reducing task runtimes, a significant fraction of jobs exist where runtimes are
unequal [16]. Moreover, runtime dispersion was greater in case of reducing.
An attempt in predicting MapReduce job runtime resulted only in a limited
success because large prediction errors appeared (> 230% mean relative pre-
diction error for successful jobs) due to application performance problems or
diversified application-specific input data [16]. This signifies reacting online
to data skew and other performance problems.

Imbalance of the mapping phase has been discussed in [17, 20], which
appears to be a problem in itself. In this paper, however, we study mitiga-
tion of partition skew for reducing. Load-balancing the reducing phase has
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been studied in [13, 15, 17]. An algorithm called fine partitioning has been
proposed in [13]. It divides the space of the key values into kr partitions,
where k > 1 is the algorithm control parameter. On completion of their
computations mappers send to the master information about sizes of the
partitions they created. The master sorts the partitions according to non-
increasing partition processing time estimates and assigns them one by one
to the reducers with the smallest total load. Thus, partitions are assigned
on the basis of the Longest Processing Time (LPT) algorithm. Another al-
gorithm called dynamic fragmentation is derived from fine partitioning. A
mapper can initiate a split of a partition if its expected computational cost
exceeds the average cost by some factor e. Factor e and the number f of
new parts created from one partition are control parameters of the method.
On completion of mapping, partition sizes are reported to the master. The
master decides on the basis of reducing time estimations which new partition
to keep and which one to ignore. Let Πi denote partition on some mapper i.
Note that if some partition Πi has been split into Π′

i,Π
′′
i on mapper i, and

has not been split on some other mapper j, then all the keys from Πj must
be copied both to the reducer processing Π′

i, and to the reducer processing
Π′′

i , while the excessive keys from Πj must be pruned. Due to this additional
complication in dataset handling we do not consider dynamic fragmentation
method in this study. In [15] algorithm LEEN has been proposed which
assigns clusters one by one to computers for reducing on the basis of keys
locality and total size of data stored on the machines. For this purpose a
score is calculated which takes into account the number of keys held by a
computer, the size of each key cluster held on a computer and the distance of
the held data size from the mean data size of all machines. Note that LEEN
has quite high complexity O(|Ω|r), where |Ω| is the number of different keys.
LEEN requires O(m|Ω|) messages to communicate detailed key distribution
data to the master. Moreover, it is not taking into account prolonging execu-
tion of some reducing task arising as a result of varying speed of a computer,
or differences in the difficulty of the keys. Hence, we do not discuss LEEN
in the further text. In [17] a SkewTune method mitigating skew dynamically
has been proposed. Though SkewTune manages data skew both in mapping
and in reducing, we consider here only the reducing phase. Each time some
reducer finishes computation SkewTune redistributes the work from a strag-
gler reducer, i.e. the one which has the latest expected completion time.
Recipients of the work are free reducers and the reducers expected to finish
before the partition being redistributed is completed. SkewTune uses range-
partitioning of keys in a partition to allow only concatenation of outputs
from mitigating machines without more complicated merging.

Divisible load theory (DLT) is a scheduling and performance model for
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data-parallel computations. It has been proposed in the late 1980s to sched-
ule parallel computations in distributed sensor networks [9] and clusters of
workstations [1]. In the following years DLT developed in many directions
to cover various communication strategies, network topologies, memory lim-
itations and cost optimizations [7, 11, 12, 19, 23]. Since MapReduce is a
data-oriented and data-parallel processing paradigm, it naturally fits DLT
methodology. Performance of MapReduce has been studied in [6] using di-
visible load model. Methods of calculating effective load partitioning have
been proposed assuming arbitrary flexibility in partitioning keys and taking
into account system performance parameters. It has been concluded that the
total MapReduce execution time is determined by the balance of computa-
tional demand between mapping and reducing. This means that the amount
of data produced by mappers and shifted to reducing plays important role.
When it is big, then the time of shuffling the data to reducers and sorting it
easily dominates the whole computation time. This approach has been gener-
alized in [3] to calculate optimum load distribution to mappers and reducers.
The scheduling model [3] is useful for discovering effective schedule patterns
which can be implemented in heuristics. Unfortunately, the proposed method
has high computational complexity and requires reliable performance data
which may be hard to obtain in a shared system with the ever-changing input
datasets. Hence, it is hard to build optimum schedule for MapReduce job in
advance and data skews must be overcome online.

3 Mathematical Model of MapReduce

In this section we define scheduling and performance model of MapReduce.
On the modeling side it builds on DLT, on the practical side it refers to the
Hadoop implementation of MapReduce.

The computation of MapReduce consists in processing (key1, value1) pairs.
Note that key1 itself has values which are something different than values1.
In our example from the introduction key1 is country which may have values
{Afghanistan,Albania,Algeria,. . .}. Let Ω be the space of key values, and let
κi ∈ Ω denote some key value. The set of all key-value pairs with the same
key value κi will be called a cluster of κi. The size of κi cluster is denoted
σi (in bytes). A partition Πj, for j = 0, . . . , R− 1, is a set of key values such
as e.g. κi. It is required that ∪R−1

j=0 Πj = Ω and ∀i ̸= j,Πi ∩ Πj = ∅. Let sj
denote size of partition Πj (in bytes). The size of a partition is the sum of
cluster sizes for the key values the partition comprises, i.e. sj =

∑
κi∈Πj

σi.
MapReduce starts with the map phase in which the input dataset is pro-

cessed in split units. Processing a split is a map task consisting of retrieving
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the split, computations on its data, and distributing the results to R different
output files on the basis of key1, where R is the number of partitions. Map
tasks are executed sequentially and managed independently by the MapRe-
duce environment such as Hadoop. Though splits have discrete nature, we
assume that the influence of split size choice has negligible impact on the
map phase duration. A more detailed discussion of this model and impact
of split size on mapping duration can be found in [4, 6]. We assume that
mappers process the splits with speed 1/A (A is in seconds per byte). Let V
denote the size of the input dataset (in bytes) and m the number of mappers
(computers). The input dataset is distributed roughly equally between the
mappers and each mapper processes volume V/m. The mapping phase dura-
tion is V A/m. We assume that for α bytes of input data αγ bytes of output
data are produced by the mappers. Hence, at the end of computation each
mapper holds roughly V γ/m bytes in R files for reducing. Since the sizes of
the files are in general unequal, mappers report sizes of output files to the
master and the size of a message is ε per output file.

The master decides on assigning partitions to the reducers, possibly using
a load-balancing algorithm (discussed in the next section). In this work we
assume that key clusters are not moved between partitions at this stage. It
means that all clusters contained in a given partition are read by one re-
ducer. Thus, unlike in the dynamic fragmentation algorithm [13] mentioned
earlier, there is no proactive partition sizing by mappers. Processing a parti-
tion is one sequential reduce task managed by the master of the MapReduce
job. The master directs the reducers to execute reduce tasks. In the shuffle
phase reducers read files from the mappers. Shuffle involves communication
over the cluster communication network. We assume that each machine has
bandwidth 1/C, the cluster network has bisection width l, and bandwidth
is shared. This means that a single communication channel in the otherwise
unloaded network has speed 1/C (C is in seconds per byte). A computer
can open at most one communication channel at a time, i.e. the so-called
one-port model is used. This requires a special communication organization
that will be described in Section 4. Bisection width l is the number of con-
current channels which can be open in the cluster between pairs of different
computers without bandwidth degradation. If the number of concurrently
open channels exceeds l, then the cluster bandwidth is shared. For exam-
ple, if x machines simultaneously open communication channels, then the
bandwidth perceived by a machine is min{1, l/x}/C. In the simulations de-
scribed in Section 5 we trace the time moments when machines start and
finish communications in order to determine the number of simultaneously
open channels and the resultant bandwidth perceived by the communicating
processes.
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After reading the assigned partitions reducers start processing them. Pro-
cessing a partition consists in two operations: sorting key-value pairs by key1
and then processing them and storing the results. We assume that for a
partition of size z (in bytes) the reduce task has runtime T (z). We will con-
sider two types of reducer complexity functions: T (z) = (asort + ared)z for
linear-time sorting such as radix sort or bucket sort, and loglinear T (z) =
asortz log2 z + aredz representing standard merge-sort. Parameters asort, ared

are processing rates (in seconds per byte) of reducer sorting and computing,
respectively. Note that for the complexity function greater than linear even
small differences in load distribution may easily escalate the differences in
the reducer completion times. Migrating data of a running sort is a cumber-
some and time consuming operation. Therefore, we assume that the sorting
operation is essentially nonpreemptive and not transferable. If a partition
assigned to a reducer were to be reconstructed and its data redistributed,
then it can be done after sorting.

4 Load-balancing Algorithms

In this section algorithms for balancing partition skew will be presented. For
practical reasons these algorithms must have low runtime. Thus, in the cases
of solving a hard computational problem, such as bin-packing, we have to
recourse to heuristics. Let us remind that partitions are built on the basis of
key clusters and one cluster is processed by one reducer.

4.1 Reference Distribution Algorithm

Our algorithms will be compared to a standard MapReduce execution with
one partition per reducer (R = r) and no additional load balancing. We
always use a simple partitioning function which places key κi in partition
Πi mod R. In the reference distribution algorithm the master assigns parti-
tion Πj to reducer j + 1, for j = 0, . . . , r − 1. The reducers read data
from the mappers using a special communication pattern which guaran-
tees that no computer performs two communications at the same time.
Namely, if m ≤ r, then mapper i communicates consecutively with reducers
i, i + 1, . . . , r, 1, . . . , i − 1. If m > r, then reducer j communicates consecu-
tively with mappers j, j + 1, . . . ,m, 1, . . . , j − 1. Each communication starts
without unnecessary delay and no computer performs more than one com-
munication at the same time. In the ideal case, when sizes of data sent
from mapper i to reducer j are equal for all i, j, there are always min{m, r}
communications taking place at a time. If the load distribution is unequal,
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then the number of concurrent communications may become smaller in some
intervals, because some computers may have to wait until other machines
finish communicating. Each reducer starts processing its partition as soon
as it obtains data from all mappers.

Let us finish this subsection with a calculation of the schedule length
for the reference distribution algorithm in the ideal case when all parti-
tions happen to have equal size. Mappers run in time AV/m and com-
municate sizes of the output files to the master in time Cmrε because
the reads of the master are sequential. The master immediately calcu-
lates distribution of the r partitions and sends information on the mr file
locations to r reducers in time Cmrε. Each mapper produced r files of
size γV/(mr) and each partition has size γV/r, so that the shuffle time is
C max{1,min{m, r}/l}γV/(mr) max{m, r}. Finally, reducers execute reduce
tasks in time T (γV/r). Thus, the total schedule length is

T ∗ = AV/m + 2Cmrε +
CγV

mr
max{1,min{m, r}/l}max{m, r} +

T (γV/r). (1)

Let us remind that (1) provides only an optimistic estimation because very
often partitions are unequal. In such cases communication and computation
times will be calculated according to the actual load sizes.

4.2 Static Algorithm

The first load balancing algorithm is based on the idea of fine partitioning
[13]. We call it a static algorithm, because the load partitioning is determined
before the shuffle phase and cannot be improved during reducing. The num-
ber of partitions is R = kr for some integer k > 1. After processing the
input splits the mappers inform the master about their output file sizes se-
quentially, in time Ckrmε. In order to obtain the optimum load assignment
for the reducers, it is necessary to solve an NP-hard bin-packing problem.
Therefore, the master uses a heuristic approach similar to LPT algorithm. It
sorts the partitions according to non-increasing sizes and assigns them one
by one to the reducers with the smallest total load. This can be done in
total time tmaster = amaster(krm + kr log(kr) + kr log r), where amaster is the
computing rate of the master. The information about the locations of the
assigned files on the mapper disks is then sent sequentially to the reducers,
in time Ckrmε. The reducers read the data from the mappers, following
the pattern of communication described in Section 4.1. Each reducer starts
processing as soon as it gathers data from all mappers. In the early ver-
sion of this algorithm presented in [5] a reducer sorted all its data (from
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different partitions) merged together. Here, the partitions are processed sep-
arately and sequentially. This decreases the total sorting time if the sorting
complexity is higher than linear.

4.3 Multi-dynamic Algorithm

In contrast to the static approach, the dynamic methods we propose for
mitigating skew in MapReduce consist in improving the load distribution
during the reducing phase. The multi-dynamic algorithm performs multiple
load balancing operations and is based on the idea similar to SkewTune
[17]. The number of partitions created by the mappers is R = r and the
application execution is the same as in the reference algorithm (Section 4.1)
until the moment when all reducers finish sorting and at least one reducer
finishes processing. When a reducer becomes idle, it notifies the master,
which then asks the other reducers about their expected processing time. The
master chooses the most loaded reducer to share a part of its unprocessed
load with the idle reducer. The amount of data to be sent to the other
reducer is computed so that both computers finish processing at the same
time. Let us remind that key clusters cannot be divided between different
processors. Therefore, the amount of transferred load usually differs from the
value computed by the master. In order to approximate the desired size the
reducer sends key clusters one by one, in the order in which they are stored
on its disk (starting from the last one), as long as the total amount of data
they contain does not exceed the limit computed by the master. In the worst
case of a single indivisible cluster no load is transferred. This procedure is
repeated every time a reducer becomes idle.

4.4 Single-dynamic Algorithm

A disadvantage of the multi-dynamic algorithm is that a reducer can start
receiving data from more loaded computers only after it processed all its
load. Thus, it has to wait idle until new data arrive. Therefore, we propose a
single-dynamic algorithm which predicts the requests to balance the load in
order to start transferring the data earlier. Again, there are R = r partitions
and the algorithm starts when all reducers finish sorting and at least one
reducer finishes processing. At this moment the master sequentially stops
the reducers which still have some load to process. Each of them informs
the master about the amount of its remaining load. Based on this data,
the master computes the expected time of finishing the application. Then,
it analyzes the scenario in which the most loaded reducer sends part of its
remaining data to the least loaded reducer (which already finished processing
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its part), so that they finish computations at the same moment. The master
assumes in simulation that it is possible to divide the load into parts of any
sizes, although in practice rounding to cluster sizes is necessary (as explained
in Section 4.3). If balancing the load assignment between the selected pair of
reducers is profitable, the master checks the next scenario, in which two most
loaded processors hand over parts of their data to the least loaded reducers.
This process continues as long as it is possible to decrease the total processing
time. The running time of master computations is amaster(r log r+Nr), where
N is the number of analyzed iterations. After choosing the best option, the
master notifies the reducers to resume computing and informs them about
the load parts they should send to different computers. The reducers perform
the operations indicated by the master, rounding the transferred load sizes
to whole clusters as in the multi-dynamic algorithm.

Let us remark that the pattern of moving clusters between the partitions
obtained by the single-dynamic algorithm is much simpler than what can
be achieved by the multi-dynamic method, as each reducer sends or receives
additional load at most once. This approach was chosen for practical reasons,
in order to avoid running complicated and time-consuming simulations by
the master as well as to avoid repartitioning the clusters and transferring
data many times. However, in the case of big imbalance in the initial load
distribution it may be disadvantageous.

4.5 Mixed Algorithm

The mixed algorithm is meant to combine the static and the dynamic ap-
proach to skew mitigation. Hence, it works both before shuffle and during
the reducing phase. We will call these two stages of the mixed algorithm
the static part and the dynamic part, correspondingly. The relation between
the sizes of load distributed in the two phases is controlled by parameter X
(0 < X < 1). A separate partitioning function is used to construct partitions
for each part of the algorithm. A subset of arbitrary ⌊X|Ω|⌋ keys is chosen to
be distributed in the static part of the algorithm. This subset is divided into
k1r partitions for some integer k1 ≥ 1, so that key κi is included in partition
Πi mod k1r. The remaining keys are divided into k2r partitions for an integer
k2 ≥ 1, to be distributed dynamically in the reducing phase. The partition
containing key κi is now determined by i mod k2r. Thus, the total number
of partitions is R = (k1 + k2)r. When mapping is finished, the k1r partitions
to be distributed statically are assigned to the reducers in the same way as
in the static algorithm (see Section 4.2). The remaining k2r partitions are
not yet assigned to any computers. The reducers read and process the data
distributed statically. When a reducer becomes idle, it sends the master a
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request for more data. The master assigns it one of the remaining parti-
tions to be distributed dynamically. The reducer reads the corresponding
data from the mappers and performs computations. These operations are
repeated until all partitions are processed.

5 Evaluation of the algorithms

In this section we compare the effectiveness of the load-balancing algorithms
against changing system parameters. We created a program in C++ that
simulates the execution of MapReduce with load balancing methods de-
scribed in Section 4. In order to precisely compute the schedule length, the
simulator maintains a queue of system events, such as the start or end of a
communication between two processors or computations on some processor.
Let us note that the events may depend on one another in many ways. For
example, starting a new communication may lead to decreasing the speed of
all data transfers taking place at the same time and hence, to delaying their
completion. In such a case all affected events are properly updated by the
simulator.

We will now describe our method of generating test instances. In all
test instances the number of keys in the input data is |Ω| = 1E6. The key
frequencies are obtained in the following way. For each key κi a number fi
is selected randomly with uniform distribution from interval (1 − ∆, 1 + ∆).
The frequency of κi is set to fi/

∑
j fj. Thus, the key frequencies are not

very unbalanced, as the maximum possible cluster size is 1+∆ times greater
than the average. We distinguish two distributions of the keys between the
partitions: hard distribution and easy distribution. For the simplicity of
presentation let us assume that the number of keys per reducer |Ω|/r is
an integer. Let us remind that in the reference distribution algorithm keys
are assigned to partitions based on their numbers, i.e. key κi belongs to
partition Πi mod R. In the hard case we renumber the keys after selecting
their frequencies, so that the first partition contains |Ω|/r most frequent
keys, the next partition contains |Ω|/r of the remaining most frequent keys,
etc. The last partition contains the keys which are the least frequent. Thus,
in the hard instances the partitions are unbalanced. In the easy case the
numbering of keys is not changed. This can be seen as assigning keys to the
partitions randomly. Hence, it can be expected that on average the sizes of
the partitions are not very imbalanced in the easy instances.

Unless stated otherwise, we assume the following system and application
parameter values: V = 1E12, ε = 8, m = 1000, r = l = 100, γ = 0.1, C =
1E-8, A = amaster = asort = 1E-7, ared = 1E-6, ∆ = 1. The reducing rate
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ared is greater than the remaining computation rates in order to emphasize
the reducing phase, for which load balancing is crucial. For each tested
setting 10 instances were generated. The measure of the algorithm quality
is the average speedup in comparison to the reference distribution algorithm
(Section 4.1).

Our experiments can be divided into three groups. First, in Section 5.1,
we tune the algorithm parameters and choose the best values of k for the
static algorithm and X, k1, k2 for the mixed algorithm. The impact of the
system and application parameters on the performance of the algorithms
is analyzed in Section 5.2. In Section 5.3 we study the robustness of the
algorithms to the volatile speed of sorting and reducing. As the number of
parameters is high, it is not possible to evaluate all possible configurations.
Therefore, we use a simple one-factor experiment design.

5.1 Algorithm Parameter Sensitivity Analysis

Let us start with analyzing the performance of the static algorithm with
k = 2, 3, . . . , 10, for the reference system configuration. Note that in the
static algorithm each mapper creates kr output files on its disk. Too big
values of k may be impractical or may decrease the mapping speed. This
is why we chose k = 10 as the maximum value. The results are presented
in Fig. 1. Let us first remark that the speedup values are much greater
for the hard instances (Fig. 1a) than for the easy instances (Fig. 1b). The
reason is that in the easy tests the initial load distribution is already rather
balanced and there is not much place for improvements. This is visible for all
algorithms in all our experiments. The speedup obtained for loglinear sort
complexity is greater than for linear sorting. This is a result of the fact that
dividing the load into smaller parts before sorting decreases the sorting time
for complexities higher than linear and has no effect for linear complexity.
The performance of the static algorithm for the linear sort is roughly the
same for k = 2, . . . , 10, for both types of instances. This means that k = 2
is sufficient to balance the load distribution. An advantage of such a small
value is that the costs of operating on kr files by each mapper and sending
the information about kr partition sizes are not big for k = 2. However,
larger k allows for shortening the processing time in the case of loglinear
sorting (see Fig. 1b). Therefore, in the further experiments we will use both
k = 2 and k = 10.

For the mixed algorithm we tested the following parameter ranges: X ∈
{0.1, 0.2, . . . , 0.9}, k1, k2 ∈ {1, 2, 5, 10}. All combinations of the above values
were analyzed. Selected results are presented in Fig. 2 and 3. Fig. 2a shows
the results for hard instances and linear sorting, for k1 = 1. This value means
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Figure 1: Speedup of the static algorithm vs. k. a) Hard instances, b) easy
instances.
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Figure 2: Speedup of the mixed algorithm for linear sort complexity, hard
instances vs. X, k2. a) k1 = 1, b) k1 = 10.

that no load balancing is performed in the first, static part of the algorithm.
Therefore, it is not profitable to process too much load in this phase and the
performance decreases when X gets big. The results for k1 = 10 are presented
in Fig. 2b. Let us note that the speedup values obtained for k1 = 2, 5 (not
shown here) are very similar to the ones for k1 = 10. This conforms with
the observation that k = 2 is enough for the static algorithm when sorting is
linear. It can be seen in Fig. 2b that the performance increases with growing
X and k2. This means that most of the load should be carefully balanced
in the static part of the algorithm. Only a small part of data should be
processed in the dynamic phase.

Fig. 3 presents the results for the easy instances with loglinear sorting.
The key to achieve good speedup is now to decrease sorting time. The best
strategy is to create many partitions of similar sizes. Thus, if k1 < k2, then
most of the load should be partitioned dynamically (it is good to choose small
X in Fig. 3a for k2 = 5, 10). Similarly, if k1 > k2, then X should be large
(see k2 = 1, 2 in Fig. 3b). Finally, for k1 = k2 it is best to choose X = 0.5.
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Figure 3: Speedup of the mixed algorithm for loglinear sort complexity, easy
instances vs. X, k2. a) k1 = 1, b) k1 = 10.

Selecting big k1 and k2 at the same time was profitable for all generated
instances. The best results for k1 = k2 = 10 were obtained for X = 0.5 or
X = 0.9, depending on the type of the instance and the complexity of sorting.
Thus, in the further experiments we will analyze two versions of the mixed
algorithm: with X = 0.5, k1 = k2 = 10 and with X = 0.9, k1 = k2 = 10.

5.2 System Parameter Sensitivity Analysis

In this section we analyze the impact of system parameters on the perfor-
mance of the algorithms. For the sake of brevity we will refer to the static
algorithm with some value of parameter k as to static(k) and the mixed al-
gorithm with k1 = k2 = 10 and some value of parameter X as to mixed(X).

We will first study the influence of the number of reducers r. Note that
with increasing r the average amount of load to be sorted and processed by
a reducer decreases. The results for r between 2 and 1000 are presented
in Fig. 4. In the instances with r > 100 the bisection width limit was in-
creased to l = r so that it would not affect the communication speed. Let
us start with the observation that the differences between speedups of the
mixed, static and dynamic algorithms are much larger for loglinear sort-
ing (Fig. 4a,c) than for linear sorting (Fig. 4b,d). When sort complexity is
higher than linear, then sorting data in several portions separately takes less
time than sorting them all together. The single-dynamic and multi-dynamic
algorithm divide the load into r partitions. The static(2) and static(10) algo-
rithms produce 2r and 10r partitions, respectively. The mixed(0.9) algorithm
creates 10r ”big” and 10r ”small” partitions, and the mixed(0.5) algorithm
produces 20r partitions of similar sizes. Hence come the relations between
the algorithm quality. With nonlinear sorting, the influence of dividing load
obtained by a reducer into smaller parts is much stronger than that of load
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Figure 4: Speedup vs. r. a) Hard instances, loglinear sort, b) hard instances,
linear sort, c) easy instances, loglinear sort, d) easy instances, linear sort.

balancing. This effect will be visible in all experiments presented in this sec-
tion. For the linear sort, the only factor is the balance of load distribution.

We will now analyze how the speedups change when r increases. For
the hard instances (Fig. 4a,b) the speedup obtained by all algorithms first
increases and then decreases. When the number of reducers is very small,
it may be hard to find a well balanced load distribution. The situation
gets better with increasing r. However, when the number of reducers is
very big, the sorting and reducing phases become shorter in comparison to
mapping. As load balancing does not affect mapping time, the speedup of
the whole application obtained by improved load balancing decreases. For
loglinear sort, the best speedup is achieved by mixed(0.9) and static(10)
algorithms, because they generate many partitions for each reducer. The
performance of mixed(0.5) is worse, although it creates 20r partitions of
similar sizes. It seems that transferring half of the load only on request of
idle reducers significantly damages performance. For linear sort, the best
results are obtained by static(2) and static(10) algorithms, which balance
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Figure 5: Speedup vs. γ. a) Hard instances, loglinear sort, b) hard instances,
linear sort, c) easy instances, loglinear sort, d) easy instances, linear sort.

the load very well (the lines overlap in Fig. 4b). The single-dynamic and
mixed(0.5) algorithm perform worst, although the overall difference is not
very big.

Different tendencies may be observed for the easy instances (cf. Fig. 4c,d).
The quality of the static and dynamic algorithms grows with growing r. As
the range of speedup is smaller for easy instances, the effect of shortening the
reducing phase is weaker. However, the costs of managing many partitions
become visible and result in the performance drop of the mixed algorithms
and slower growth of the static(10) speedup. This is especially evident for the
mixed(0.5) algorithm, in which a big portion of load is transferred to reducers
quite late, after they finished processing the load distributed statically. For
loglinear sort, it is still profitable to use the algorithms that create many
partitions when r is large, due to shorter sorting time. For linear sort and
big r the algorithms creating many partitions are worse than single-dynamic,
multi-dynamic and static(2) algorithms, although the overall difference in
speedup is again small.
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Figure 6: Speedup vs. ared. a) Hard instances, loglinear sort, b) hard in-
stances, linear sort, c) easy instances, loglinear sort, d) easy instances, linear
sort.

In the next series of experiments we analyzed parameter γ which controls
the amount of load that is transferred from the map phase to the shuffle
and reduce phase. Thus, growing γ increases the contribution of sorting
and reducing in the total application running time. As a consequence, the
speedup obtained by all algorithms also increases (see Fig. 5). It seems that
γ does not affect the relationships between different algorithms. The order
of the algorithms, from the greatest to the smallest speedup, is similar as in
Fig. 4 with r = 100, for both instance types and sorting complexities.

The speedups for different values of reducing rate ared are presented in
Fig. 6. Let us remind that increasing ared makes the reducing phase more
computationally demanding compared to mapping, shuffle and sorting. On
the one hand, it exposes the need for balancing a long reducing stage and
hence allows for achieving better speedup of the whole application. On the
other hand, for loglinear sort complexity, the static and mixed algorithms
achieve good speedup mostly in the sorting phase, which becomes less im-

19



a)

1E-2 1E-1 1E+0
1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

static (2) static (10) mixed (0.5)

mixed (0.9) single-dynamic multi-dynamic

b)

1E-2 1E-1 1E+0
1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

static (2) static (10) mixed (0.5)

mixed (0.9) single-dynamic multi-dynamic

Figure 7: Speedup vs. ∆. a) Hard instances, loglinear sort, b) easy instances,
loglinear sort.

portant when ared is very big. Hence, the speedups of the static and mixed
algorithms increase in Fig. 6b (linear sort), but decrease in Fig. 6a,c (log-
linear sort). The single-dynamic and multi-dynamic algorithms do not lose
performance when sorting becomes less important. Thus, their performance
improves with growing ared in all cases. An interesting phenomenon can be
seen in Fig. 6d, where the performance of mixed(0.5) algorithm significantly
decreases with growing ared for easy instances with linear sorting. This is
a similar situation as in Fig. 4d. The maximum possible speedup is small
due to the initial good load balance and hence, the time when processors
wait idle for more load in the dynamic part of the mixed algorithm becomes
important and leads to decreasing performance.

Fig. 7 shows the impact of key distribution dispersion parameter ∆ on
performance of the algorithms. The smaller ∆ is, the smaller differences
between key frequencies. We present the speedups for loglinear sort only
because for linear sort (not shown in Fig. 7) the differences between the
algorithms for ∆ < 1 are negligible. As could be expected, the speedups
of all algorithms grow, as larger unbalance in the data gives more space for
improvements. The relations between the results of different algorithms are
determined by the numbers of created partitions, which affect the sorting
time.

We also tested the impact of the remaining system parameters m,C, l, V
on the performance of the algorithms, which we report in short only. As
increasing the number of mappers m means shortening the mapping phase
compared to the remaining parts of processing, it has a similar effect as in-
creasing γ (cf. Fig.5). Increasing parameter C means slower communication,
and hence it decreases the speedup of all algorithms. It has the strongest ef-
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Table 2: Numbers of instances for which particular algorithms obtained best
results.
Algorithm Hard, Easy, Hard, Easy, Total

loglinear sort loglinear sort linear sort linear sort

static(2) 10 10 215 29 264
static(10) 62 14 309 0 385
mixed(0.5) 50 550 50 223 873
mixed(0.9) 488 27 30 3 548
single-dynamic 0 0 0 0 0
multi-dynamic 0 9 6 355 370

fect on the single-dynamic and multi-dynamic algorithms because they trans-
fer large amounts of data between reducers. The speedup of the algorithm
static(2) almost does not change, because the total size of data sent in the
network is very close to the size of messages sent in the reference distribution
algorithm. Decreasing l also decreases the communication capabilities of the
network, but the speedup is only slightly affected. This can be attributed to
the fact that the additional messages used by the balancing algorithms very
rarely use all the available bisection width. For sequential communication
(e.g. sending messages to and from the master) the bisection width limit l is
meaningless. The total load size V does not affect the effectiveness of load
balancing.

In total, 610 test instances with various combinations of system parame-
ters were solved for each type of key distribution and sorting complexity. It
appears that no algorithm dominates in all possible cases. In some situations
the differences are minor. Therefore, we summarize algorithm performance
in Table 2 as the number of instances for which certain algorithm constructed
the best solution. For the hard instances and loglinear sort complexity the
best algorithm is mixed(0.9), as it creates the greatest number of partitions
and distributes only a small amount of load dynamically. When the complex-
ity of sorting is linear, dividing data into many parts is not so important. For
hard instances and linear sort the best results are obtained by static(10) and
static(2) algorithms. The easy instances are best solved by the algorithms
that balance the load dynamically, in many steps: multi-dynamic (linear
sort) and mixed(0.5) (loglinear sort). It is worth noting that the mixed(0.5)
algorithm won the greatest total number of instances. The single-dynamic
algorithm did not win for any instance we solved. This means that balanc-
ing the load by creating pairs of reducers exchanging parts of data is too
simplistic.
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Figure 8: Speedup(δ) vs. δ. a) Hard instances, loglinear sort, b) easy in-
stances, loglinear sort.

5.3 Robustness

The assumption that computing speed is constant is unrealistic in many
cases. Even small changes in the machine performance may lead to a signifi-
cant dispersion in processor running times and longer application execution.
In this section we study the robustness of the load-balancing algorithms to
changing parameters asort and ared. In the following experiments values of
these parameters changed every 100 seconds and were chosen randomly, in-
dependently for each reducer, from ranges (asort(1 − δ), asort(1 + δ)) and
(ared(1−δ), ared(1+δ)), correspondingly. Parameter δ is controlling the vari-
ability of computing speed. For example, δ = 0 means that the processing
rates are constant, and δ = 0.1 means that the processing rates can differ by
at most 10% from the expected value.

We will start with analyzing the influence of changing computer speed
on the speedup of load balancing algorithms. For clarity of presentation
we will divide the speedup obtained for given value of parameter δ by the
speedup obtained in a system with no computer speed changes. We will
denote this measure as speedup(δ). Thus, speedup(0) always equals 1. The
results are shown in Fig. 8. We discuss loglinear sorting only, as the results
obtained for both sort complexities were very similar. It can be seen that
the static algorithms are the least robust to the changing computing speed.
Indeed, they try to divide the load equally between reducers and have no
information about the real speed of processing. Thus, they cannot react when
some reducers are slower than others. The dynamic and mixed algorithms
have knowledge about the actual times when processing by some reducers
finished and use it to better balance the further computation. Both dynamic
algorithms and the mixed(0.9) algorithm achieve speedup(δ) greater than
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1 for the easy instances and big δ. This means that they can counteract
the drop of performance that occurs for the reference algorithm when the
environment becomes volatile. Still, it should not be forgotten that though
static algorithms loose ≈2% in speedup due to varying processing speed
(Fig.8), their reference performance for hard instances with loglinear sort is
by 100% better than, e.g., the single- and multi-dynamic algorithms (Fig.4a-
6a).

Besides the speedup changes, we studied the influence of parameter δ on
the dispersion of the reducer completion times. Let us define for i = 1, . . . , r
value τi = ti/T , where ti is the completion time on reducer i and T is
the total application running time. Thus, τi represents the fraction of the
schedule length in which reducer i is active. As reducer completion times
dispersion measures we used the standard deviation and the interquartile
range (IQR) of values τi. Since the results were very similar in both cases,
we present the IQR only. However, to better understand the influence of
speed changes, let us first report on the dispersion of completion times in a
system with no computing speed changes, for different values of ared, shown in
Fig. 9. It turned out that the sorting complexity does not affect these results
strongly, so we present only loglinear sort. All proposed algorithms decrease
the dispersion of values τi compared to the reference algorithm. Only the
performance of the multi-dynamic algorithm strongly depends on ared. Let
us remind that this algorithm starts working after all reducers finish sorting
and every time when a reducer becomes idle it performs only one balancing
operation. Thus, if ared is very small, the multi-dynamic algorithm does not
have enough time to balance the load. However, when ared becomes bigger,
the algorithm uses multiple balancing operations and obtains the best IQR,
close to 0. In most cases the single-dynamic and the static algorithms give
smaller IQR than the mixed algorithms. It seems that sending portions
of data on requests from idle reducers, as the mixed algorithms do in the
dynamic stage, causes larger differences in reducer completion times. Still,
the IQR of mixed algorithms is less than 5%.

Let us now return to the experiment with changing speeds. Fig. 10 shows
the changes in IQR of values τi for growing δ. We present the results for
linear sort only, because the observed tendencies are similar for both sort
complexities, and the range of IQR changes is greater in the case of linear
sort. For clarity we show the IQR for given δ divided by the IQR obtained
in the system with no speed changes. This measure is denoted by IQR(δ).
The results confirm our observations about the robustness of the algorithms
based on Fig. 8. The relative completion time dispersion IQR(δ) of the static
algorithms strongly increases with growing system volatility. The single-
dynamic algorithm is also affected (the lines for static(2) and single-dynamic
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Figure 9: IQR of τi vs. ared. a) Hard instances, loglinear sort, b) easy
instances, loglinear sort.
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Figure 10: IQR(δ) of τi vs. δ. a) Hard instances, linear sort, b) easy instances,
linear sort.

algorithm overlap in Fig. 10a). Although it has information about the actual
sorting finish times, it cannot react to changing reducing speeds. Thus, the
static and single-dynamic algorithms have small IQRs in a system without
speed changes, but they can get very bad in a volatile system. The multi-
dynamic and the mixed algorithms adjust the load balance many times, using
the information about the real processing times. Hence, they are most robust
and δ has almost no impact on them.

6 Conclusions

In this work we analyzed the problem of mitigating the partition skew in
MapReduce computations, using the divisible load model. We proposed four
methods of handling the skew. The static algorithm adjusts the load dis-
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tribution before the shuffle phase, using the idea of fine partitioning. The
multi-dynamic algorithm performs many simple load balancing operations in
the reducing phase. The single-dynamic algorithm simulates the application
execution in order to handle the skew in one complex operation. Finally, the
mixed algorithm processes a part of data like the static algorithm, and sends
the chunks containing the remaining data on requests from idle reducers.

The algorithms were tested in a series of computational experiments. It
was shown that the performance of the algorithms depends on the complexity
of sorting by the reducers. If the sorting complexity is loglinear, then it is
profitable to divide the data into a big number of partitions. Hence, the
mixed algorithms and static(10) perform best. For linear sorting, the best
results are obtained by the static algorithms for hard instances, and multi-
dynamic and mixed(0.5) for easy instances. The single-dynamic algorithm is
clearly outperformed by the other methods. Table 2 shows types of workloads
in which certain algorithm dominates.

We also tested the robustness of the algorithms to the changing sorting
and reducing speeds. The static algorithms operate on load sizes, not pro-
cessing times, and hence their performance decreases in a volatile system.
All the algorithms decrease the dispersion in reducer completion times in
comparison to the standard MapReduce organization. If reducing is slow,
then the multi-dynamic algorithm achieves the smallest dispersion.

Overall, it can be concluded that no single algorithm is a panacea. De-
pending on the type of workload or system features some types of algorithms
may be better than the others. It seems that the single-dynamic algorithm
is the weakest choice. A mixed algorithm, possibly with some tuning of
parameter X, is a good compromise.

Future work on this subject may include analyzing different types of skew,
like unequal key distribution between mappers, or taking into account ma-
chine failures. Another direction is to adjust the algorithms to aim at a given,
not necessarily equal load distribution between the reducers. This may be
useful for optimizing the execution time of chains of MapReduce applications
producing data one for another.

References

[1] R. Agrawal, H.V. Jagadish, Partitioning Techniques for Large-Grained
Parallelism, IEEE Transactions on Computers 37, 1627-1634 (1988)

[2] Apache Software Foundation, Welcome to Apache Hadoop, 2014, http:
//hadoop.apache.org/

25
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