
Scheduling for gathering multitype data

Joanna Berlińska (Speaker) ∗ Bart lomiej Przybylski †

1 Introduction

Scheduling in data gathering networks has been attracting an increasing interest
in recent years. Algorithms were proposed, e.g., for maximizing network lifetime
[1], minimizing data compression cost [2, 6] and minimizing maximum dataset
lateness [3]. In this work, we depart from two common assumptions: that all
required datasets are located on remote computers, and that the whole available
data have to be collected. We analyze gathering required amounts of data of
different types, with the possibility of generating additional datasets.

Our research is motivated by the following scenario. A number of datasets
containing randomized simulation results are available in distributed locations.
Each dataset is characterized by a type, which describes the input and algorithm
parameters used for simulations that produced the data. In order to provide a
meaningful analysis of the impact of parameter values on the results, we have to
collect appropriate numbers of datasets of certain types on a single computer. It is
possible that the number of datasets of some type generated so far is insufficient.
The remote nodes are no longer available for computations, but additional results
can be produced locally. It is assumed that all datasets have equal sizes, and
hence, the time required to download a dataset depends only on its initial location.
However, using different parameter values may result in varying simulation time,
and hence, the time necessary to produce a dataset depends on its type. Our goal
is to gather the required data (either by downloading them from remote nodes, or
by running computations on a local processor) in the shortest possible time.

2 Problem formulation

We analyze a star network consisting of a central computer P0 and m nodes
P1, . . . , Pm holding data. There exist n types of datasets, denoted by numbers
j = 1, . . . , n. For each j, we have to gather Kj datasets of type j on P0. The

∗Joanna.Berlinska@amu.edu.pl. Faculty of Mathematics and Computer Science, Adam
Mickiewicz University in Poznań, Umultowska 87, 61-614 Poznań, Poland
†bap@amu.edu.pl. Faculty of Mathematics and Computer Science, Adam Mickiewicz Univer-

sity in Poznań, Umultowska 87, 61-614 Poznań, Poland

number of datasets of type j located on node Pi, where i = 1, . . . ,m, is kij . Do-
wnloading one dataset from node Pi to P0 takes time Ci. Only one dataset can be
transferred at a time. The time required to generate one dataset of type j on the
server is denoted by Aj . Note that the order in which datasets are downloaded or
produced does not affect the total time of communication or computation. Thus,
the scheduling problem is to decide which datasets should be downloaded from
which nodes, and how many datasets of each type should be generated on P0, in
order to minimize the total data gathering time T .

In other words, we have to execute n jobs, where job j consists in obtaining
Kj datasets of type j on P0, for j = 1, . . . , n. Since only one dataset can be
downloaded at a time, the communication network can be seen as the first avai-
lable machine, while processor P0 is the second machine. Naturally, it is possible
to generate and download datasets of the same type in parallel. Thus, our pro-
blem resembles scheduling preemptive work-preserving malleable jobs [4] on two
machines. However, there are substantial differences between these two problems.
Firstly, our first machine does not have a constant speed, because it consists of
many nodes with possibly different communication capabilities. Secondly, in our
problem preemptions are possible only after an integer number of datasets have
been downloaded (on the first machine) or generated (on the second machine).

3 Results

We first show that our problem is NP-hard. Indeed, suppose that m = n, Kj = 1,
kjj = 1 for j = 1, . . . , n, and kij = 0 for i 6= j. Let Aj = Cj = pj for each
j = 1, . . . , n. In this case, each job j consists in obtaining just one dataset, and
hence, it is non-preemptable. Its execution time is pj independently of the chosen
machine. Thus, we have to solve the NP-hard problem P2||Cmax [5]. Hence, our
problem is also NP-hard, as its generalization.

Let xij be integer variables representing the number of datasets of type j
downloaded from node Pi, for i = 1, . . . ,m, j = 1, . . . , n. Our problem can be
formulated as an integer linear program in the following way.

minimize T (1)
m∑
i=1

n∑
j=1

Cixij ≤ T (2)

n∑
j=1

Aj(Kj −
m∑
i=1

xij) ≤ T (3)

0 ≤ xij ≤ kij for i = 1, . . . ,m, j = 1, . . . , n (4)

In the above program, we minimize the schedule length T . Constraints (2) gua-
rantee that all data transfers fit in time T , and by (3) the required, yet not down-
loaded, datasets are generated on P0 within time T . Inequalities (4) ensure that
we do not download from Pi more datasets of type j than available.

Program (1)-(4) can also be used to obtain a polynomial 2-approximation al-
gorithm for our problem. To this end, we solve its relaxed version with rational
variables xij , and then round the obtained values of xij to the nearest integers.

We propose the following algorithm for the case when Ci = C for i = 1, . . . ,m.
Note that in this case we can replace nodes P1, . . . , Pm by a single node holding
kj =

∑m
i=1 kij datasets of each type j. First, we construct a schedule with the

maximum number of downloaded datasets, i.e. we transfer min{Kj , kj} datasets
of type j and generate max{0,Kj−kj} datasets of this type. Then, we go through
a list of dataset types sorted according to nondecreasing computation costs Aj ,
and check how many datasets of a given type should be produced instead of down-
loading them, in order to decrease the makespan as much as possible. We change
the schedule accordingly, and move to the next type. This procedure stops when
no improvement is possible, yielding an optimum solution in O(mn+n log n) time.

A similar greedy approach can be used to solve the problem if Ci are arbitrary,
but Aj = A for all j = 1, . . . , n. Again, we start with a schedule that maximizes
the number of downloaded datasets. Obviously, if datasets of a given type can be
downloaded from many nodes, we prefer the nodes with lower communication costs.
Afterwards, we iterate over the nodes in the order of nonincreasing communication
costs Ci, and replace downloading datasets they hold by producing them on P0, as
long as this shortens the schedule. This algorithm runs in O(mn+m logm) time.

As an outlook for future work, we analyze the properties of a more general pro-
blem, where datasets of the same type require additional merging and processing
after being gathered.

References

[1] J. Berlińska (2014). Communication scheduling in data gathering networks
with limited memory. Applied Mathematics and Computation 235, 530-537.

[2] J. Berlińska (2015). Scheduling for data gathering networks with data com-
pression. European Journal of Operational Research 246, 744-749.

[3] J. Berlińska (2018). Scheduling Data Gathering with Maximum Lateness
Objective. In: R. Wyrzykowski et al. (ed.), Parallel Processing and Applied
Mathematics: 12th International Conference PPAM 2017, Part II, LNCS
10778, 135-144. Springer, Cham.

[4] M. Drozdowski (2009). Scheduling for Parallel Processing. Springer, Lon-
don.

[5] M.R. Garey and D.S. Johnson (1979). Computers and Intractability: A
Guide to the Theory of NP-Completeness. Freeman, San Francisco.

[6] W. Luo, Y. Xu, B. Gu, W. Tong, R. Goebel and G. Lin (2018).
Algorithms for Communication Scheduling in Data Gathering Network with
Data Compression. Algorithmica 80(11), 3158-3176.

