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1 Introduction
A data gathering network is a computer system comprising a set of worker nodes
and a base station. The workers obtain or produce datasets which have to be
transferred to the base station. Data gathering wireless sensor networks find ap-
plications in military surveillance, environment monitoring and healthcare. A dis-
tributed system, where the computation results obtained by many workers have
to be passed to a single server, is also a data gathering network.

In a star data gathering network, the workers communicate directly with the
base station. Contrarily, in a tree network, data are relayed through a set of inter-
mediate nodes. Scheduling algorithms were designed for optimizing data gathering
in several types of star networks, such as, e g., networks with data compression
[1, 5, 6], with variable communication speed [3] and with limited base station
memory [2]. Tree data gathering networks have attracted less attention so far.
Minimizing the maximum lateness in a tree network with dataset release times
and due dates was studied in [4].

This work considers scheduling in a tree data gathering network with limited
memory. Each of the worker nodes holds a dataset that has to be sent to an
appropriate intermediate node. The intermediate node processes the dataset and
then sends it to the base station. A dataset occupies the intermediate node’s
memory buffer from the moment when it starts being received until the time when
its transfer to the base station completes. The total size of datasets coexisting in
the memory of an intermediate node can never exceed its buffer size. Our goal
is to organize dataset transfers and processing so as to minimize the total time
required to gather the data.

2 Problem formulation
The data gathering network consists of n worker nodes, m intermediate nodes and
a single base station. An intermediate node Pi, where 1 ≤ i ≤ m, gathers data
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from ni workers Pij , where 1 ≤ j ≤ ni. Thus, n1 + · · · + nm = n. A worker Pij

holds a dataset Dij of size αij , which has to be sent to the intermediate node Pi

for processing. The processed dataset is then passed by Pi to the base station.
Sending dataset Dij from Pij to Pi takes time c1αij , and processing this dataset
by Pi requires time aαij . The processed dataset Dij is sent to the base station in
time c2αij . Preemptions in communication or computation are not allowed. Each
node, including the base station, can receive at most one dataset at a time. An
intermediate node can process at most one dataset at a time, but it can receive
one dataset, process another dataset, and send yet another dataset simultaneously.
Each intermediate node processes and sends datasets in the order in which it
receives them. The size of the memory buffer of node Pi is Bi ≥ maxni

j=1 αij . At
the moment when a dataset Dij starts being sent to Pi, a memory block of size αij

is allocated at Pi. The block is released when the transfer of the processed dataset
Dij to the base station is completed. The total size of memory blocks allocated
at Pi cannot at any time exceed Bi. The scheduling problem is to minimize the
makespan, i.e., the time by which all processed datasets arrive at the base station.

3 Results
The analyzed problem generalizes makespan minimization in a star data gathering
network with limited base station memory [2], and hence, it is strongly NP-hard.
We first formulate it as an integer linear program (ILP). The program contains
O(n) rational variables, O(n3) binary variables and O(n3) constraints, and in
consequence, it cannot be used in practice for solving even moderate size instances.
Therefore, we also propose heuristic algorithms.

First, we design simple heuristics running in O(n2) time. Each of these algo-
rithms is defined by two rules. The first one determines the order in which the
datasets are transferred to each intermediate node Pi, and the second one defines
the order in which the datasets are passed to the base station. We consider the
following rules for sending datasets to intermediate nodes.

• Inc: send the datasets in the order of non-decreasing sizes αij .
• LF: always choose the largest dataset which fits in the memory currently

available at the intermediate node.
• Rnd: send the datasets in a random order.

Since the datasets are sent to the base station by an intermediate node Pi in the
order in which they were received and processed, a rule designed for sending the
datasets to the base station only has to choose the order of the datasets received
from different intermediate nodes. We analyze two scheduling methods for this
stage.

• FIFO: transfer the datasets in the order in which their processing at the
intermediate nodes completed.

219



• B: choose the dataset from the intermediate node which has the smallest
currently available memory.

An algorithm that uses Rule1 for sending the datasets to the intermediate nodes,
and Rule2 for transferring them to the base station, is denoted by Rule1-Rule2.

Furthermore, we design a variable neighborhood search algorithm VNS. In
this algorithm, a schedule is represented by an array x[1..n] of dataset priorities,
where a smaller number means a higher priority. The priority of dataset Dij is
x[
∑i−1

k=1 nk +j]. In order to compute the makespan, the schedule is constructed us-
ing the defined priorities both for sending the datasets to the intermediate nodes,
and for transferring them to the base station. Variable neighborhood search con-
sists in systematically changing the neighborhoods used during local search. Sup-
pose a sequence of neighborhoods N1, . . . , Nkmax are defined. The algorithm starts
with the current neighborhood number k = 1 and a given initial solution x. In
each step, the best solution x′ in neighborhood Nk(x) is found. If x′ is better than
x, then x is changed to x′ and k is set to 1. If x′ is not better than x, then k is
increased by 1. The search continues until k exceeds kmax. In our algorithm, the
initial solution is x = [1, . . . , n], and the following three neighborhoods are used.

• N1(x) contains all arrays obtained from x by reversing any subarray x[i..j].
• N2(x) contains all arrays obtained from x by swapping a pair of values x[i]

and x[j].
• N3(x) contains all arrays obtained from x by moving a value x[i] to an

arbitrary position j ̸= i in the array.

The proposed algorithms were implemented in C++ and tested in a series of
computational experiments on randomly generated instances. The obtained results
lead us to the following conclusions.

• The computational cost of ILP is very high even for small instances.
• The B rule for scheduling the transfers to the base station is counterproduc-

tive. Much better results are obtained by the FIFO rule.
• Among the simple heuristics, the best solutions are usually produced by

LF-FIFO. Still, if c2, δB or m is very large, or c1 or a is very small, then
Inc-FIFO obtains better schedules.

• VNS significantly outperforms the simple heuristics. It delivers very good
results in a short time.
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