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Abstract

In this paper we study divisible load scheduling in systems with limited
memory. Divisible loads are parallel computations which can be divided
into independent parts of arbitrary sizes and processed in parallel on re-
mote computers. The problem consists in distributing the load taking
into account communication time, computation time, and limited mem-
ory buffers, such that the whole processing lasts as short as possible. The
distributed system is a heterogeneous single level tree (star). The amount
of memory at the processors participating in the computation is too small
to accommodate the whole load at any moment of time. Therefore, the
load is distributed in many small installments. Memory reservations have
block nature, by which we depart from earlier models simplifying the
memory management. We formulate this problem as a mixed nonlin-
ear programming problem, and then propose two algorithms to solve it.
The branch-and-bound algorithm is nearly unusable due to its complex-
ity. Then, a genetic algorithm is proposed with more tractable execution
times. We extensively analyze impact of various system parameters on the
quality of the solutions. From this we infer on the nature of the scheduling
problem.

Keywords: Parallel processing, scheduling, divisible loads, memory limita-
tions, multiple installments.

1 Introduction

In this paper we study scheduling divisible loads in systems with limited mem-
ory sizes. Divisible load (DL) model represents parallel computations which
can be divided into parts of arbitrary sizes, and the parts can be processed
independently in parallel. These two simple assumptions on the nature of the
parallel application have deep implications. Namely, the grains of parallelism
are negligibly small because the load part sizes may be arbitrary. Since the
parts can be processed independently, there are no data dependencies or other
kinds of precedence constraints in the computation. Parallel processing of big
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volumes of data conforms with DL model. The processed data is generally called
as load. Divisible load model originated in the late 1980ties [1, 4]. In [1] DL
model has been applied to represent distributed computations in a network of
workstations. In publication [4] a chain of intelligent sensors was considered.
In both cases the problem was how to partition the computations such that
the whole processing time is as short as possible. On one hand distributing the
computations reduces processing time by employing additional computers. On
the other hand, distributing the computations takes time. Hence, the problem
is what load quantities should be sent to which processors. The mathematical
models proposed in the early publications were easily tractable and boiled down
to systems of linear equations. Later on, DL model has been applied to analyze
performance of various computer network topologies, systems with parameters
varying in time, limited memory sizes, to schedule computations in minimum
monetary costs, and other. Overall, the divisible load theory (DLT) delivered a
generic and versatile method of analyzing a broad class of parallel computations.
Surveys of DLT can be found, e.g., in [2, 5, 11].
Scheduling divisible loads in systems with limited memory sizes was first

considered in [9] where a heuristic called Incremental Balancing Strategy was
proposed. It was assumed that all the processors always take part in the com-
putation, the sequence of sending the load pieces to the processors is given, and
that the whole load fits in the memory buffers of the computers. Furthermore,
a simple linear model of communication delay was assumed. A more general
affine communication time model including communication startup times was
analyzed in [6]. A linear programming formulation was given which delivers
optimum load partitioning under affine communication time model, and for a
given sequence of load distributing. The problem of constructing optimum set
of processors participating in the computation was shown to be NP-hard in [8].
A branch-and-bound (BB) algorithm and a bunch of heuristics has been pro-
posed and experimentally evaluated in [8] for the problem of single-installment
divisible load processing with arbitrary communication sequence, and arbitrary
set of participating processors. In this paper we assume that the whole load
is too big to store it in the memories of the computers at the same moment.
Therefore, it is distributed and processed in many small pieces each of which
fits in the computer memory. This organization of computations is called a
multi-installment or multi-round processing. Multi-installment processing of di-
visible loads in systems with limited memory has been analyzed in [7]. An affine
communication delay function was assumed, the set of processors taking part
in the computation and the sequence of communicating with them was arbi-
trary. A branch-and-bound, and genetic (GA) algorithms have been proposed
to solve this problem. However, memory management has been simplified in [7]
to make the mathematical model tractable (we discuss it in more detail in the
next section).
In this paper we study scheduling divisible loads in a star system (also called

a single level tree) with limited memory buffers. We assume that the commu-
nication delay is an affine function of the amount of processing load. The set
of processors taking part in the computation, and the sequence of sending load
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chunks to them can be arbitrary and must be selected by the scheduling algo-
rithm. Moreover, we assume that the memory reservations, and releases have
realistic block nature (it is detailed in the next section). We express our prob-
lem as a mathematical programming formulation, and propose two algorithms
to solve it: an optimization branch-and-bound algorithm (BB) which guarantees
optimality of the solution, and an approximate genetic search algorithm (GA).
Though it can be proved that the former algorithm (BB) delivers optimum so-
lutions, it is practically unusable due to its complexity. The latter algorithm
(GA) delivers good quality solutions only on average, but it is more applica-
ble considering the execution time. We propose the GA not only to define yet
another metaheuristic solving some combinatorial optimization problem, but
also to gain some insight into the features of near-optimum solutions. An ex-
tensive computational study was conducted to analyze practical features of the
scheduling problem important for processing large divisible computations.
The rest of the paper is organized as follows. In Section 2 we formulate the

problem formally. In Section 3 methods of solving the problem are presented
and discussed. We report on the results of the computational experiments, and
the insights into the nature of the problem in Section 4. The last section is
dedicated to the conclusions.

2 Problem Formulation

In this work we assume that each processing element is equipped with a CPU,
some memory, and hardware front-end for managing network communications
(e.g. NIC and DMA). The CPU and network hardware can work in parallel
such that simultaneous computation and communication is possible. The words
processing element, processor, and computer will be used interchangeably. We
assume star interconnection. In the center of the star a processor P0 called origi-
nator is located. The originator is connected to a set {P1, . . . , Pm} of processors.
Initially the originator has some volume V of load to be processed. The load is
sent directly from the originator to the processors. The star topology may repre-
sent a cluster of workstations connected via a local area network, a set of CPUs
in SMP system sharing a bus, a distributed computation with the originator as
a master, and the computers as workers in a grid environment. We assume that
only processors P1, . . . , Pm perform computations, and the originator does no
computing. Were it otherwise, the computing capability of the originator can be
represented as an additional processor. For simplicity of mathematical models
we assume that the time of returning the results to the originator is negligible.
The processor and its communication link to the originator are characterized by
the parameters: Ai - computing rate (inverse of speed e.g. in seconds per byte),
Bi - size of available memory (expressed, e.g., in bytes), Ci - communication
rate (inverse of bandwidth), Si - communication startup time (e.g. in seconds).
The process of load distribution consists in sending pieces of the load to the
processors for remote computation. Words installment, chunk, message, piece
of load, communication will be used interchangeably. The transmission time of
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Figure 1: Memory management: a) each chunk uses whole buffer, b) memory
gradually released, c) block memory releases.

a load chunk of size α (e.g. bytes) sent to processor Pi is Si + αCi. The same
amount of load is computed on Pi in time αAi.
Now let us analyze memory management. We assume that memory is allo-

cated from the operating system pool at the beginning of the communication
comprising the load chunk, and it is released to the operating system after the
end of computation on the load chunk. The size of the load which arrived at
a processor may not exceed the amount of available memory. The simplest
approach to modeling memory usage is to assume that only one chunk is held
by a processor at a time (cf. Fig.1a). Hence, the chunk of size αi may use
all the available memory and a constraint αi ≤ Bi is imposed, for processor
Pi. This approach was used in [8, 9]. Yet, it is insufficient in multi-installment
processing when many messages may arrive at the processor: The load can be
gradually uploaded, new and old buffers can be swapped without stopping the
computations. Consequently, the load chunk sizes may interact with each other.
In [7] it was assumed that the received load together shall not exceed memory
size Bi. However, it was also assumed that memory is released to the operating
system with very fine granularity equal to the load unit. Consequently, memory
occupation was decreasing linearly during computations (cf. Fig.1b). With such
a simplification load chunk sizes could be calculated using linear programming
for a given communication sequence. Still, this way of releasing memory seems
rather unusual. In this paper we assume that memory allocation and release
have block nature (cf. Fig.1c). When a chunk of size αj is about to arrive to a
processor, a block of αj load units is requested from the operating system. This
block exists in the memory pool of the application until finishing computation
on chunk j. On completion of chunk j a block of size αj is released to the
operating system. The sizes of coexisting memory blocks cannot exceed limit
Bi. In other words, for each moment t,

∑
l∈H(i,t) αl ≤ Bi, where H(i, t) is the

set of chunks received by Pi and not completed by time t. We will be saying
that chunks simultaneously existing in memory buffer overlap. Thus, H(i, t) is
a set of chunks overlapping at time t on Pi.
We will express our scheduling problem as a mixed nonlinear mathematic

program. Let us introduce necessary assumptions and notation. The load is
delivered to the processors in a sequence of communications. The sequence
may be arbitrary, which means that some processors may be excluded from
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Table 1: Notation used in formulation (1)-(15)

m number of processors;
Ai, Bi,
Ci, Si

computing rate, memory size, communication rate, communi-
cation startup time of processor Pi, respectively;

σ communication sequence (constant in (1)-(12));
σ(i) index of the processor receiving the i-th chunk in (1)-(12);
n length of communication sequence σ (constant in (1)-(12));
ni number of chunks sent to processor i (constant in (1)-(12));
ρ(i, k) global number of the k-th chunk received by processor i, i.e.

mapping from local chunk numbers on processor i to the global
numbers (constant in (1)-(12));

M a constant greater than schedule length, for example, M ≥
V (maxm

j=1 Cj + maxm
j=1 Aj) + n maxm

j=1 Sj (constant in (1)-
(12));

αi the i-th chunk size (variable in (1)-(12));
Tmax schedule length (variable in (1)-(12));
ti time when sending of message i (global number) starts (vari-

able in (1)-(12));
fik time when processing of message k (local number) on processor

i finishes (variable in (1)-(12)).
xijk binary variable denoting if chunks j, k overlap on Pi (variable

in (1)-(12)).
δij advancement of overlap interval introduced with chunk j on Pi

(variable, used in alternative overlap encoding(13)-(15)).
zij the last chunk overlapping with chunk j on Pi (derived from

δij , used in alternative overlap encoding(13)-(15)).
nMIN = V

maxi{Bi}
minimum number of load chunks

m′ ≤ m the number of different used processors
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the computations, while some other processors may receive the load more often
then others. If the message is received by a processor without any load in the
buffer, then computations start immediately after the end of communication. If
the buffer already stores some unprocessed chunks, then the processor switches
from computing one load chunk to the next one without idle time in the com-
putations. Idle times may arise between the communications when processor
memory occupation is maximum, and no new load may be uploaded to any
processor. We assume that the sequence of processing the chunks on a given
processor is the same as the sequence in which they were received. Let us assume
that the sequence σ = (σ(1), . . . , σ(n)) of the communications to the processors
is given, where σ(i) is the index of the processor receiving the i-th chunk. The
numbers of the load chunks as they are sent off the originator will be called
global numbers. For simplicity of notation also local numbering of the chunks
received by a certain processor will be used. Function ρ(i, j) is a mapping from
processor Pi local chunk number j to the global numbering. In the following
mathematical program we want to express the fact that chunks simultaneously
existing in a processor buffer do not exceed memory size. To formulate such a
constraint we have to know which load chunks overlap, but this depends on the
communication sequence, and chunk sizes which are unknown. Consequently,
the sets of overlapping chunks are to be determined. Let xijk be a binary vari-
able equal 1 if the j-th chunk on processor Pi overlaps with chunk k, and equal
0 otherwise. In other words, xijk = 1 means that Pi started receiving chunk
k before computing the j-th chunk was finished. In Table 1 we summarize the
notation introduced so far and the notation used in the following mathematical
program. Our problem can be formulated in the following way.

minimize Tmax

subject to

t1 = 0 (1)

ti ≥ ti−1 + Sσ(i−1) + Cσ(i−1)αi−1 i = 2, . . . , n, (2)

fik ≥ tρ(i,k) + Si + Ciαρ(i,k) + Aiαρ(i,k) (3)

i = 1, . . . , m, k = 1, . . . , ni,

fik ≥ fi,k−1 + Aiαρ(i,k) (4)

i = 1, . . . , m, k = 2, . . . , ni,

fij ≥ tρ(i,k) − (1 − xijk)M i = 1, . . . , m, (5)

j = 1, . . . , ni − 1, k = j + 1, . . . , ni

fij ≤ tρ(i,k) + xijkM i = 1, . . . , m, (6)

j = 1, . . . , ni − 1, k = j + 1, . . . , ni

xijk ≤ xilk i = 1, . . . , m, j = 1, . . . , ni − 1, (7)

k = j + 2, . . . , ni, l = j + 1, . . . , k − 1

xijk ≥ xijl i = 1, . . . , m, j = 1, . . . , ni − 1, (8)

k = j + 1, . . . , ni, l = k + 1, . . . , ni
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αρ(i,j) +

ni∑

k=j+1

xijkαρ(i,k) ≤ Bi i = 1, . . . , m, j = 1, . . . , ni (9)

V =

n∑

i=1

αi (10)

Tmax ≥ fini
i = 1, . . . , m (11)

xijk ∈ {0, 1} (12)

Variables αi in the above formulation define load partitioning resulting in
minimum schedule length for the communication sequence σ. Inequalities (1),
(2) determine the moment when sending of the i-th chunk starts. Constraints
(3),(4) determine the earliest time moment fik when computation on chunk k
of Pi finishes. Inequalities (5), (6) guarantee that according to the value of xijk

processing of chunk j is, or is not, finished before starting message k. Only
one of inequalities (5), (6) is active for some i, j, k. If xijk = 0 then chunk j
should be finished before starting the k-th communication to processor i. In
this case inequality (6) is active (and (5) is inactive) ensuring the requirement.
If xijk = 1, then chunk j is still unfinished when message k is initiated. In
this case inequality (5) is active ((6) is inactive) ensuring the overlap of chunks
j, k. Inequalities (7) guarantee that if chunk j is not processed when chunk k
arrives, then the chunks between j, and k are also unprocessed. Inequalities
(8) ensure that if chunk j is finished before arriving of some chunk k, then j
can no longer become unprocessed again. By inequalities (9) memory limits are
observed. No load remains unprocessed by (10). Schedule length is not shorter
than the completion time on any processor by constraints (11). Formulation
(1)-(12) is a mixed quadratic mathematical program because we have binary
variables (xijk), continuous variables (αi, fik, ti, Tmax), and multiplication of
variables in constraints (9). This implies that program (1)-(12) is hard to solve
even though the activation sequence σ is given. This is in sharp contrast with
the complexity of memory management models used in [7, 8] for which linear
programs were needed to calculate load partition for a given communication
sequence σ. Thus, representation of block memory management, and chunk
overlap made the mathematical model much more involved. Note that (1)-(12) is
very general and may cover various scenarios of optimum memory management.
For example, it is capable of representing a number of independent buffers of
equal or different sizes swapped on the processors. Let us observe that for
a given xijk the above formulation becomes a linear program (LP). This is a
foundation of the solution methods proposed in the next section.

3 Algorithms

In the previous section we established that for a given communication sequence
σ, and given values of variables xijk encoding chunk overlap, chunk sizes αi

can be calculated by an LP. Hence, our problem can be solved by a tandem of
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Figure 2: Overlapping encoding. a) by xijk , according to the (1)-(12), b) alter-
native encoding using overlap extensions. Black area - infeasible xijk , light gray
- xijk = 1, white - xijk = 0.

methods. The first solves the combinatorial part of the problem by selecting
activation sequence σ, and chunk overlap xijk . The second part solves the LP for
the given σ and xijk . Below we present a convenient solution encoding method,
and two methods working according to the above tandem rule.

3.1 A New Solution Encoding Method

In formulation (1)-(12) the overlapping of several chunks is determined by vari-
ables xijk . Since there are at most n(n − 1)/2 such variables (when ∃ini = n)
the number of possible value assignments is at most 2n(n−1)/2. However, taking
into account constraints (7),(8) a different way of encoding chunk overlapping
is possible. For some chunk j sent to processor Pi it is possible to encode how
many chunks received on Pi after j overlap with processing of chunk j. Fur-
thermore, due to constraints (7) it is only necessary to encode by how many
positions the front of overlapping is shifted ahead with each new message re-
ceived by Pi (see Fig.2). Instead of ni(ni − 1)/2 binary variables xijk we will
use ni integer variables δij denoting by how many chunks the overlapping front
is forwarded with chunk j on Pi. If the values of δij , for j = 1, . . . , ni, are given
then constraints (5),(6) may be rewritten as follows:

fij ≥ tρ(i,zij) for i = 1, . . . , m, j = 1, . . . , ni − 1 (13)

fij ≤ tρ(i,zij+1) for i = 1, . . . , m, j = 1, . . . , ni − 1 (14)

where zij = min{ni, max{zi,j−1 + δij , j + δij}, }, and zi1 = 1 (cf. Fig.2). Here
zij is the index of the last chunk which overlaps chunk j. If zij = ni, only con-
straints (13) are necessary, and constraints (14) must be dropped because ρ(i, j)
is undefined for j > ni. Furthermore, if zij = ni for some j then constraints
(13) for j′ > j are not necessary, as they are enforced by (4). Analogously, if
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zij = j, constraint (13) may be dropped as enforced by constraint (3). In the
new encoding the bounds on the memory usage (9) are replaced with:

zij∑

k=j

αρ(i,k) ≤ Bi i = 1, . . . , m, j = 1, . . . , ni (15)

With the new solution encoding constraints (5)-(9) should be substituted with
(13)-(15). This new solution encoding is used in both methods presented in the
following sections. For given σ, and δij distribution of the load can be obtained
from formulation (1)-(4),(13)-(15), (10)-(12) simplified to a linear program.

3.2 Branch and Bound Algorithm

A branch and bound algorithm (BB) is a standard technique applied in solving
combinatorial optimization problems. In BB algorithm a branching rule divides
the set of possible solutions until distinguishing unique solutions. The pruning
(or bounding) rule eliminates sets of solutions which are certainly not better
than some already known solution, or are infeasible.
In our problem one has to determine a sequence of communications, and

chunk overlapping. Communication sequences were built by appending a new
processor to some already constructed leading sequence. For example, se-
quence σ = (Pa, . . . , Pz) represents all the solutions beginning with commu-
nication sequence σ. This set is partitioned by appending a communication
to any processor from set {P1, . . . , Pm}. Thus, the set of solutions repre-
sented by σ is branched into subsets of solutions beginning with sequences:
(Pa, . . . , Pz , P1), . . . , (Pa, . . . , Pz , Pm). For each communication sequence chunk
overlapping on the used processors must be decided. All overlaps possible in
the new encoding were enumerated in the following way. For processor Pi over-
lap is a vector (δi1, . . . , δini

). A sequence (δi1, . . . , δij) encoding the overlap for
the first j chunks received by Pi, was branched into overlap encoding strings
(δi1, . . . , δij , 0), . . . , (δi1, . . . , δij , ni −max{j, zij}). Thus, the BB algorithm uses
a double branching scheme: for communication sequences, and for the chunk
overlaps.
Enumeration of possible solutions was pruned by two methods. For a given

sequence σ a lower bound LB(σ) on the schedule length was calculated as fol-
lows. The startup times in σ were summed up: τ1 =

∑n
i=1 Sσ(i). The maximum

load V ′ that could be processed during the communication startup times is

V1 =
∑

i∈σ(τ1 −
∑g(i)

j=1 Sσ(j))/Ai, where g(i) is the index of the first commu-
nication to processor Pi in σ. The load must be sent from the originator in
time at least τ2 = V minm

i=1{Ci}. In parallel with this communication, at most
V2 = τ2∑

m

i=1

1

Ai

units of load could be processed. If V3 = V − V1 − V2 > 0, then

this remaining load V3 will be processed in time at least τ3 = V3∑
m

i=1

1

Ai

. The

lower bound is equal to LB(σ) = τ1 + τ2 + max{0, τ3}. Let T be the length of
some already known solution. If T ≤ LB(σ) then successors of σ were discarded.
Another mechanism used in sequence elimination was based on the maximum
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memory MEM(σ) =
∑n

i=1 Bσ(i) which could possibly become available in σ.
If MEM(σ) < V then, it means that memory available for holding the load is
insufficient, and communication sequence is too short and must be expanded.
In such a case the enumeration of the various overlap values was not attempted
for the given σ. Observe that there are O(mn) communication sequences of
length n for m processors, and for each processor the number of possible ways
of overlapping the communication chunks is also exponential in ni. Thus, due
to the high computational complexity an upper bound nMAX on length n of
generated sequences was also imposed. Note that this was done to make the BB
algorithm more usable, and it was not needed to properly define the algorithm.
Consequently, due to the use of nMAX not in all cases was BB able to deliver
an optimum, or even a feasible solution.

3.3 Genetic Algorithm

The genetic algorithm (GA) is also one of the standard techniques used in
solving combinatorial optimization problems. GA is a randomized algorithm
using a set of operators transforming a population of solutions in the direction
of improving quality. GA is defined by the way of encoding the solution, the set
of genetic operators, stopping criteria, and several implementation-dependent
tunable parameters.
In our implementation of GA solutions are encoded as pairs of strings. The

first string is a sequence of processor indices encoding communication sequence
σ. The second string O is encoding overlap of chunks. More precisely, O(i) is
the value of δσ(i)j , where j is the number of load chunks sent to processor Pσ(i)

up to the i-th chunk sent off the originator. The lengths of σ, O are equal, and
can be adjusted by GA to construct the best solution. Contents of strings σ, O
is sufficient to formulate a linear program calculating αis as defined in Section
3.1. Fitness of the solution (called a chromosome) is measured as the value of
schedule length Tmax also obtained from the linear program for the given σ, O.
The genetic operators of GA applied here are selection, crossover, and mu-

tation. The selection of the chromosomes for the new population is done by
a combination of elitist and roulette wheel method and is strongly connected
with the crossover operation. Each chromosome is selected with probability

1
T j

max

/
∑G

j=1
1

T j
max

, where T j
max denotes the schedule length for chromosome j,

and G is the size of the population. The total number of selected parents
is GpC , where pC is a tunable algorithm parameter called crossover proba-
bility. In the crossover operation the selected parents are randomly paired
and combined. For example, let [(σ1(1), . . . , σ1(n

′)), (O1(1), . . . , O1(n
′))] and

[(σ2(1), . . . , σ2(n
′′)), (O2(1), . . . , O2(n

′′))] be two parent solutions, with commu-
nication sequence lengths n′, n′′, respectively. Let k, l ≤ m be two randomly
chosen crossover points. The two offspring solutions are encoded in strings
[(σ1(1),. . . , σ1(k), σ2(l),. . . , σ2(n

′′)), (O1(1),. . . , O1(k), O2(l),. . . , O2(n
′′))], and

[(σ2(1),. . . , σ2(l), σ2(k),. . . , σ2(n
′)), (O2(1),. . . , O2(l), O1(k),. . . , O1(n

′))]. Note
that because of choosing two crossover points l, k the offspring string lengths
may be different than in their parents. The rest of the new population is se-
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lected by elitist method so that the best (1 − pC)G chromosomes are always
preserved. The elitist component in the selection was necessary because very
often the difference in solution fitness is small, and the best solutions may be
lost in the randomized selection based on the schedule length only.
Mutation changes E(t)pM random genes (i.e. pairs (σ(i), O(i))) in the pop-

ulation to different values. Here E(t) =
∑G

j=1 nj(t) is the total number of genes

in the population in generation t, nj(t) is the length of chromosome j in iteration
t, and pM is a tunable algorithm parameter called mutation probability.
The algorithm stops after a fixed number of iterations it1. There is also a

limit it2 on number of iterations without an improvement in the quality of the
best solution found so far. If iteration limit it2 is reached before it1, then the
population is replaced with randomly generated chromosomes and the search is
started from scratch (the best solution found so far is recorded).
GA is a randomized algorithm which parameters must be tuned. We applied

the following procedure. A set of 200 random instances with m = 3, . . . , 5, V =
20, Bi uniformly distributed in [0, 10], Ai, Ci, Si uniformly distributed in [0, 1],
were generated and solved to the optimum by BB. The average relative distance
of the schedule length Tmax from the optimum length was the measure of the
tuning quality. The tunable parameters were selected one by one. The process
of selecting the tunable parameters is illustrated in Fig.3. Intuitively, a big
population size G should allow for finding good solutions in small number of
iterations. On the other hand, maintaining big populations is computationally
expensive. The populations size G = 20 was selected as a compromise between
the speed of convergence to the near-optimum solutions, and the computational
complexity (cf. Fig.3a). To select the crossover probability mutation operator
was switched off. Crossover probability pC = 0.8 was selected (Fig.3b). It
turned out that majority of the population (80%) are offspring. Hence, it can
be concluded that crossover is an effective optimization operator. After fixing
G and pC , mutation probability pM = 0.1 was chosen (Fig.3c). In Fig.3d
quality of tuning for various combinations of maximum number of iterations, and
iterations without quality improvements are shown. Note that improving the
average solution quality by 0.4% results in nearly 6-fold increase of the execution
time. Hence, it1 = 100, it2 = 10 were selected as a compromise between quality
and complexity.

3.4 BB vs GA comparison

Before proceeding to the further study of the features of the optimum and near-
optimum solutions let us discuss advantages, and limitations of both solution
algorithms.
BB guarantees optimum solutions, however, at considerable computational

cost. In Fig.4 we compare average execution time of BB and GA. In the case
of BB execution time is shown as function of nMAX (Fig.4a). We use nMAX

because it turned out that the size of the search tree in BB is determined
mainly by the limit nMAX . The minimum communication sequence length
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Figure 3: GA tuning. a) Solution quality vs. population size G, b) solution
quality at 100th iteration vs. pC , c) solution quality at 100th iteration vs. pM ,
d) solution quality and execution time for various iteration limits it1/it2.

nMIN = V
maxi{Bi}

, is hardly ever the length of the best sequence, or the depth

of the BB search tree. To be certain that the best communication sequence
obtained in BB is indeed optimum it must have length at most nMAX − 1.
Instances satisfying this condition are easier to solve than the instances which
force BB to search a tree as deep as nMAX , and presenting the execution times in
the function of the guaranteed optimum communication sequence length would
not represent real execution time of BB. As it can be seen even average execution
time of BB for nMAX = 7, m = 8 is of order of one day. Hence, BB is not
acceptable as a tool for studying features of great numbers of even moderate
size instances. For the GA, execution time is shown vs. the length of the best
obtained communication sequence. In Fig.4b execution time vs. the number of
processors m is shown.
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Figure 4: GA and BB execution times. a) vs. sequence length, b) vs. processor
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From the tuning process described in the previous section we conclude that
GA is capable of delivering high quality solutions on average. As it can be seen
in Fig.4 the running time of GA is much shorter than for BB. A disadvantage
of GA as an analysis tool is that it is a randomized algorithm. In the limit
of infinite iteration number, all feasible solutions are reachable in a process of
random transformations of the solutions. The randomness in GA may have two
disadvantages. Solutions which are not optimum may be to easy to find by GA,
which may give wrong indications on the nature of the solved problem. On the
other hand, solutions which have complex structure may be too improbable to be
built in finite iteration number. For example, the communication sequence may
include some processor which is not present in the optimum solution because
the probability of selecting any processor in the sequence is high. Conversely, it
is very unlikely that GA builds a long repetitive pattern of communications in
the communication sequence because the probability of generating it decreases
exponentially with the sequence length (more precisely it is 1

mn ). Moreover, for
the same instance GA may return different solutions in consecutive runs. For
example, for a set of 45 random instances each solved 20 times, the quotient
Tmax

Tmax

where Tmax is an average schedule length in all runs for a single instance,

had the coefficient of variation was 6%, and average (over all quotients Tmax

Tmax

)

was 0.9997.
We finish this section with a conclusion that BB is nearly unusable even on

very moderate size instances. GA has much shorter execution time, and in the
range in which it could be compared against BB, the quality of the GA solutions
is very good. Though GA has its limitations it is the only tool at hand capable
of solving bulk numbers of instances in reasonable time. Therefore, we will use
GA as a replacement of BB in the analysis of the scheduling problem features.
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4 Analysis of the Problem

In this section we present results of the investigation on the characteristic of
the near-optimum solutions of our scheduling problem. We mainly concentrate
on the features in the combinatorial part of the solutions: the communication
sequence σ, and the vector of overlaps O. The studied features include:

• the need and the extent of the overlap,

• the length of communication sequence,

• number of used processors,

• the set of used processors,

• the chunk sizes,

• parameters of instances which make them easy, or hard, to solve.

We will draw conclusions both analytically and on the basis of experimental re-
sults. Both GA and BB in the simulations use lp solve LP package [10]. Over
30000 instances were solved in the experiments on clusters of 15-75 PCs with
Linux. Unless stated otherwise, the test data were generated in the following
way. In the experiments involving analysis of the influence of system parameters
A, B, C, S on solution characteristic, instance parameters A, B, C, S, were gen-
erated from U(0, 1], i.e. uniform distribution with in range (0,1]. The number
of processors was generated from U [1, 10], and all experiments were repeated for
V ∈ {2, 5, 10, 20, 50}. In the experiments concerning certain parameter (say A)
the parameter was fixed to a given value on all processors (e.g. ∀i, Ai = 0.01),
and the remaining parameters were generated as described above. For each
combination of V , and certain value of the parameter (e.g. Ai = 0.01) 1000 in-
stances were generated. In the following sections we analyze the above features
of the solutions.

4.1 Depth of Overlap

By the depth of overlap we mean the number of the load chunks which interfere
with each other. The depth of overlap is expressed by the values of δij which
can be converted to the more convenient values of the span of overlap zij − j+1
for each chunk j on processor Pi, where zij (see Section 3.1) is the number of the
last chunk overlapping with chunk j on Pi. The existence of the overlap means
that load must accumulate on the processors. It is of practical importance to
verify if the accumulation of the load is actually necessary, and to what degree.

4.1.1 Single processor considerations

Here we analyze the case of one computing processor (m = 1). Despite simplic-
ity, this problem is not trivial because to construct a schedule one has to decide
on the overlap of the load chunks, and their sizes.
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Figure 5: Merging overlapping chunks in Observation 2.

Let us start with several simple observations which can help in reasoning
about our problem. For simplicity presentation we drop the subscripts related to
processor indices. We denote processor parameters asA, B, C, S, and the overlap
of chunk j by δj . It can be shown [12] that if there are no memory limitations,
then there are no idle times in the computations nor in the communications
(also for m > 1). It is not the case in our problem.

Observation 1 There are optimum sequences with idle times in the computa-

tion and in the communication.

Proof. Suppose A = 1, B = V
2 , C = 0, S = M , where M � V is a

big constant. The minimum number of communications is nMIN = V
B = 2,

for which schedule length is Tmax = 2M + V . There is an idle interval of
length V

2 in the communications, and two idle intervals of length M in the
computations. Idle times in computation cannot be closed because any load
which feasibly fits in memory size B = V

2 is processed in shorter time than the
startup time S = M � V . Suppose that we want to close the idle interval in the
communications. This requires that two consecutive load chunks fit in memory
of size B = V

2 , and at least three chunks must be sent from the originator. Then
schedule length is at least 3M . Since M can be arbitrarily big in relation to V ,
the difference between the length of a schedule with idle times and the length
of the schedule without idle times in communication can be arbitrarily big in
absolute terms. 2.
We will be saying that solutions for which chunks overlapping by not more

than 1, i.e. ∀j, δj ≤ 1, have overlap at most 1. If ∀j, δj = 1, then we will say
that a solution has overlap 1.

Observation 2 On one processor there is no need for more than overlap 1.

Proof. We will prove that there are optimum solutions for which δj ≤ 1.
Suppose there is an optimum solution with overlap greater than one and j
is the first chunk for which ∃j, δj > 1. Chunk zj > j + 1 is the last chunk
overlapping with chunk j. Consider a constructive transformation (see Fig.5).
First communications of the chunks j+1, . . . , zj−1 are shifted right (later) until
they are sent without idle time just before chunk zj . Second, include the load
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of chunks j +1, . . . , zj −1 in the message of zj, and drop chunks j +1, . . . , zj −1
altogether. This operation is feasible because the optimum solution must satisfy
condition (15) demanding that all chunks j, . . . , zj fit in memory. Thus the load
fits in the memory no matter whether it is sent in chunks j+1, . . . , zj−1, or just
in chunk zj. This operation does not change schedule length because chunks
j +1, . . . , zj − 1 overlap with j, and hence, are not being processed when chunk
j is computed. The overlap δj has been reduced to at most 1. This operation
may be repeated iteratively to all chunks to remove any overlap greater than 1.2.
Observation 3 The schedule for sequence with the nMIN can be at most twice

as long as the optimum schedule.

Proof. Schedule length Tmax for a sequence with smallest nMIN = dV
B e

is not greater than nMINS + CV + AV . On the other hand, for the optimum
solution, T ∗

max ≥ nMINS + CV and T ∗
max ≥ AV .

1. If AV ≤ nMINS + CV then Tmax

T∗

max
≤ nMIN S+CV +AV

nMIN S+CV ≤ 2.

2. If AV ≥ nMINS + CV then Tmax

T∗

max
≤ nMIN S+CV +AV

AV ≤ 2. 2.
Observation 4 In solutions with overlap 1 chunk sizes may be coupled.

Below we explain what we mean by coupling of chunk sizes. A schedule with
overlap 1 has ∀j, δj = 1, and the chunks overlap with their direct predecessor
and direct successor (if any). If chunk 1 has size α1, then by (15) chunk 2 has
size at most α2 ≤ B − α1, chunk 3 has size at most α3 ≤ B − α2 = α1, etc.
Thus, if chunks have all their maximum sizes, then the size of all chunks is in
fact determined by a single variable α1. The size of processed load is

n
2 B if

communication sequence has even number n of messages, or it is n
2 B +α1 if n is

odd. Chunk sizes are coupled if n = d 2V
B e, and the overlap is 1 (thus number of

chunks is chosen tightly for the given overlap). We will say that solutions with
n = d 2V

B e, overlap 1, for m = 1 are coupled.

Observation 5 The coupled solutions are not arbitrarily bad.

Proof. For the optimum solution T ∗
max ≥ dV

B eS +CV = nMINS +CV . For

a coupled solution we have Tmax ≤ d 2V
B eS + CV + AV = n2S + CV + AV and

n2 ≤ 2nMIN .

1. If AV ≤ CV then

Tmax

T ∗
max

≤
n2S + CV + AV

nMINS + CV
≤ 1 +

nMINS + AV

nMINS + CV
≤ 2

2. If n2S + CV ≤ AV then

Tmax

T ∗
max

≤
n2S + CV + AV

AV
≤ 1 +

n2S + CV

AV
≤ 2
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Figure 6: m = 1, quality of the solutions with various communication sequence
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3. If CV ≤ AV ≤ n2S + CV then

Tmax

T ∗
max

≤
n2S + CV + AV

nMINS + CV
≤

2(n2S + CV )

nMINS + CV
≤

2(2nMINS + CV )

nMINS + CV
≤

≤
4(nMINS + CV )

nMINS + CV
= 4

Let us note that if the number of communications if not greater than k×nMIN ,
then Tmax

T∗

max
≤ 2k. 2.

The above observation gives an indication on the quality of schedules with
n = d 2V

B e and overlap 1. In Fig.6 quality of schedules for m = 1, various
sequence lengths, and the best overlap chosen by BB algorithm is shown. The
coupled solution quality is used as a reference, and are represented by the points
at the coordinates (0, 1). For example, shorter sequences are on shown on the
negative part of horizontal axis. The best, the worst, and an average distance
from the coupled solution is shown. The results in Fig.6 represent 888 randomly
generated instances with A, C, S ∼ U [0, 1], B ∼ U(0, 10), V = 10. As it can be
seen, typically the best solutions are not very much better than the coupled
ones. Increasing n beyond d 2V

B e is not reducing schedule length more than by
approx. 13%. Thus, on average coupled solutions provide a simple and efficient
method of solving the combinatorial part of our problem on m = 1 processor.
Let us observe that optimum communication sequence length n can be smaller
or greater than d 2V

B e depending on the instance.
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Figure 7: An instance with arbitrary overlap in Observation 6.

4.1.2 Overlap on Multiprocessors

In the preceding section it has been observed that no overlap greater than 1 is
necessary ifm = 1. However, form > 1 arbitrarily big overlap may be necessary
in optimum solutions.

Observation 6 There are optimum solutions with arbitrarily big overlap.

Proof. Let k, M be two integers, where k > 5 is even, and 2k − 3k − 1 >
M > 3k + 1. Consider the following example: m = 3, V = 22k + k2k + 1, A1 =
1

22k , B1 = 22k, C1 = 0, S1 = M, A2 = 1
2k , B2 = 2k, C2 = 0, S2 = 2, A3 =

M + 3k − 3, B3 ≥ V, C3 = k − 1, S3 = 0. We want to build a schedule of length
T ≤ M + 3k. We will show that also no shorter schedule may exist.
To process V one activation of P1 is necessary. P1 cannot be substituted by

any other processor because only P1 has sufficient memory buffer, and speed to
process load 22k in time shorter than T . Indeed, load 22k is computed on P1 in
time 1. P1 cannot be activated more than once because 2S1 = 2M > T . If P2

were to substitute P1 then it would require at least
B1

B2

= 2k communications of

length at least B1S2

B2

= 2k > T .
We will prove now that processor P2 must receive k messages processing of

which is not overlapping.
Consider the load V − B1 = k2k + 1 remaining to be processed by P2, P3.

In time T processor P3 is capable of processing at most
T
A3

= M+3k
M+3k−3 = 1 +

3
M+3k−3 < 2 < 2k units of load. Note that 3

M+3k−3 can be arbitrarily small by
the selection of M, k. Thus, to process the remaining load P2 must receive at
least k messages. If in the k messages each one caries load B2 than the whole
communication and computation can be feasibly performed in time 3k as shown
in Fig.7.
On the other hand assume that P2 receives more than k messages. Suppose

that processing of none of the load chunks overlaps. Then we have communica-
tion time at least (k +1)S2 = 2k +2. At least k2k − 3

M+3k−3 units of load must
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be processed by P2. Computation of at most B2 load units can be performed
in parallel with startup S1. Hence, computation and communications of P2 to-
gether with the startup time S1 take at least time S1 + (k + 1)S2 + A2(k2k −

3
M+3k−3 − B2) = M + 2k + 2 + k − 1 − 3

2k(M+3k−3)
> M + 3k. Thus, if the

number of messages received by P2 is greater than k, then processing of load
chunks on P2 must overlap.
We will calculate now the length of the communication time when the chunks

sent to P2 overlap. Consider some sequence of load chunks which processing is
overlapping. Let the first load chunk i overlap with the next δi chunks. To obey
memory limits the group of δi consecutive chunks may contain load at most B2.
The next group of chunks starting with chunk δi +1 is independent in this sense
that they may carry another volume of at most B2. Let la be the number of
groups of chunks overlapping by a. Let ∆ be the greatest overlap. A group of
a overlapping chunks requires communication time at least S2a. If some chunk
i is not overlapping (denoted overlap δi = 0) with any other chunk then its
communication and computations (not overlapped by other communication to
P2) last S2 +A2αi = S2 + αi

2k . In the following discussion it will be convenient to
assume that each chunk with overlap 0 transfers load of size B2. We explain that
this transformation does not increase schedule length. Let V ′ be the amount
of load that should be added to the chunks with overlap 0 to fill the buffer
completely, i.e. V ′ =

∑
{i:δi=0}(B2 − αi). This missing amount of load must

be processed in chunks with the overlap greater than 0. If we shift load V ′

from chunks with overlap 0 to the chunks with overlap greater than 0, then we
shorten the idle time in communications to P2 by V ′A2 = V ′

2k . Simultaneously,

we increase the number of communications by d V ′

B2

e, which take time S2d
V ′

B2

e =

2dV ′

2k e. Thus shifting the load from chunks with overlap 0 to other chunks is not
reducing the duration of communications. Hence, to calculate a lower bound on
the schedule length we may assume that chunks with overlap 0 contain load B2.
To process on P2 the required amount of load the number of independent groups
of overlapping chunks must be at least k as shown above, i.e.

∑∆
δ=0 lδ = k. The

total communication time is at least
(S2 + 1)l0 + S2

∑∆
δ=1(δ + 1)lδ =

(S2 + 1)l0 +
∑∆

δ=1((S2δ − 1)lδ) +
∑∆

δ=1((S2 + 1)lδ) =

(S2 + 1)
∑∆

δ=0 lδ +
∑∆

δ=1((S2δ − 1)lδ) =

(S2 + 1)k +
∑∆

δ=1((S2δ − 1)lδ) =

3k +
∑∆

δ=1((2δ − 1)lδ).

Note that
∑∆

δ=1((2δ − 1)lδ) > 0. If ∃ δ > 1, lδ > 0 then the communications to
P2 are longer than 3k, and hence it is infeasible to send enough load to P1, and
P2. Therefore, P2 can receive at most k messages processing of which must not
overlap.
Since P2 receives k messages at most k2k units of load are processed on P2.

Processor P3 must compute the remaining amount of V −B1−kB2 = 1 units of
load. Transferring the k load chunks to P2 takes communication time S2k = 2k.
Since the chunks on P2 are not overlapping, at k−1 intervals of length B2A2 = 1
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Table 2: Relative frequency of the overlaps in all the chunks

overlap 0 1 2 > 2
frequency 0.835 0.154 0.010 0.001

1[0.9,1)[0.8,0.9)[0.7,0.8)[0.6,0.7)[0.5,0.6)[0.4,0.5)[0.3,0.4)[0.2,0.3)[0.1,0.2)(0,0.1)0

1E0
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O>=2

Figure 8: Histogram of overlap frequencies in the instances.

are free for communications to P3. The communications to P1 and P2 together
with the necessary idle times in communication to P2 take time M + 3k − 1.
Considering the fact that the load on P1 or on P2 must be computed in at least
1 unit of time, P3 cannot receive its load before P1, or P2. Thus, load for P3

will be delivered in at most k chunks. Moreover the schedule cannot be shorter
than M + 3k + 1. Communication time of each load chunk for P3 is not longer
than 1, therefore load of size at most 1

k−1 can be transferred to P3 in a single
message. Computing 1 unit of load on P3 lasts M + 3k − 3. Thus there can
be no more than three units of idle time on P3. In parallel with startup time
S1 processor P3 must compute at least load

M
M+3k−3 . Since messages convey

at most load 1
k−1 , the number of messages waiting to be processed on P3 when

communication to P1 starts must be at least
(k−1)M
M+3k−3 which tends to k − 1 as

M tends to infinity. We conclude that it is possible to construct an optimum
schedule which requires arbitrarily deep overlap. 2
From the above observation we conclude that the overlap can be arbitrarily

deep. Results collected from solutions by GA of 19953 randomly generated
instances with A, B, C, S ∼ U [0, 1], m ∼ U [1, 10] and V ∈ {2, 5, 10, 20, 50}
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indicate, however, that the depth of the overlap is not very big. Table 2 lists
the relative depth of the overlap of all chunks in all sequences of the solutions
generated by GA for the above instances. A more detailed view of the chunk
overlaps is presented in Fig.8. The vertical axis is the relative frequency of
instances with certain fraction of chunks of with certain overlap. For example
(see the rightmost box ”1” for overlap O = 0), for chunks with overlap 0,
approximately 36% of all instances have only chunks with overlap 1. The absence
of a point in box ”0” for overlap 0 means that there were no instances without
a chunk with overlap 0. The number of solutions for which the chunks with
overlap 1 are 90% to 99.99% of all the chunks in the communication sequence
is approx. 0.4% of all instances (box ”[0.9,1)” for overlap O = 1). On the other
end, approx. 36% of all instances have no chunk with overlap 1. Finally, overlaps
2 and bigger are very rare: approx. 87% solutions have no chunk with overlap 2
or greater, and only 0.005% instances have solutions with the number of chunks
with overlap at least 2, in more than 40% of all the chunks in the solution. For
the above experimental results we can conclude that overlap deeper than 1 is
rare, because it constitutes approx. 1% of all chunks in all solutions.

The analysis of the depth of the overlap leads to the following conclusions:
On a single processor the overlap is in {0, 1}, the solutions with overlap 0, or
1 cannot be arbitrarily bad, and a solution with n = dV

B e, and ∀j, δj = 1 is
good on average. For multiple processors (m > 1), the the overlap may be
arbitrarily deep, but overlaps greater than 1 are rare in practice. Moreover,
results obtained for m = 1 cannot be transferred to the multiprocessor case.

4.2 Length of the communication sequence

One of the important characteristics of the solution is the number of communi-
cations n. The length of the communication sequence depends on V , and Bis.
Therefore, it seems reasonable to use some reference number of communications.
Let us assume that the reference number of communication is nMIN . We start
with some observations.

Observation 7 A communication sequence with minimum number of chunks

nMIN = V
maxi{Bi}

can be arbitrarily bad for schedule length.

Proof. Consider an example: m = 2, S1 = 1, C1 = 0, A1 = 1, B1 = 1, S2 =
M, C2 = 0, A2 = 1, B2 = V , where M is a big constant. The minimum number
of communications is nMIN = 1, and it results in a schedule of length M + 1.
On the other hand if P2 is used only, then schedule length is 1 + V , and the
number of communications is n = dV e. The ratio of the two schedule lengths is
M+1
V +1 which can be made arbitrarily big by selection of M , and V . 2.
Observation 8 The length n of the optimum communication sequence can be
arbitrarily big in relation to nMIN .
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Proof. Note that the number of messages in the optimum communication
sequence proposed in the previous proof can be arbitrarily big. 2.
Let us now analyze the length of communication sequences generated by

GA. The values of relative communication sequence lengths n
nMIN

are shown in
Fig.9. In Fig.9a the average (AVG), and the longest (relative) communication
lengths are shown for various A values. It can be seen that typically n

nMIN
is not

very big. On average n ≈ 1.39nMIN , which is calculated over all instances of
changingA. The length of the sequence grows with A, which is especially evident
for the biggest registered relative lengths. This phenomenon can be attributed
to the way of calculating nMIN . For example, for V = 2, and Bi ∈ (0, 1] the
expected nMIN is 4, and in extreme cases it can be just nMIN = 2. On the other
hand, as processors get slower (A is increasing) it gets more and more profitable
to use all m available processors. Thus, n

nMIN
grows with A. This increase is
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stronger for small V , and weaker for bigger V . In Fig.9b similar dependence
is shown for changing B

V . The length of the communication sequence quickly

increases with B
V . It is because, on one hand, for

B
V approaching 1, nMIN is also

approaching 1, but as in Observation 8 other parameters of the system make it
profitable to build sequences with n � 1. On the other hand, as B

V approaches
0, more and more short communications must be made to send the load off the
originator. Each message carries cost of startup S. Therefore, communication
costs and startup in particular, dominate in the schedule length. To minimize
this cost it is advantageous to send as few messages as possible. Hence, n tends
to nMIN when

B
V is decreasing. Similar observations can be made for big big

values of S (cf. Fig.9d). For big Sis it is profitable to send as few messages as
possible. This, in turn, exposes the need for big communication buffers. The
behavior of n

nMIN
for small S must be contrasted with Fig.9a. When S ≈ 1

2
on average, as in Fig.9a, then n

nMIN
≈ 1.39. If S = 0.001, as in Fig.9d, then

n
nMIN

≈ 8. This means that big startup time is a considerable disincentive to
building long communication sequences. In Fig.9c dependence of n

nMIN
on C

is shown. Note that this figure has two vertical axes. The shapes of MAX ,
and AV G are similar, but for the average case the changes are in the range of
approximately 5%. This should be surprising because multi-installment divisible
load processing was introduced to reduce the time of initial waiting for load.
Growing value of C should be an incentive to build shorter messages and longer
communication sequences. This tendency can be seen only for small values of
C. Yet, in our setting of the experiments expected value of the startup times is
1
2 which is a disincentive to build long communication sequences as explained on
the example of Fig.9a, and Fig.9d. Hence, the dependence of average n

nMIN
on

C is very weak. Moreover, with growing C the algorithm tends to compensate
increasing communication costs by sending fewer messages. Thus, initial waiting
for the load is meaningless compared to the whole communication cost.

From the above analysis of the communication sequence length we draw the
following conclusions: Startup times Si are important element of communica-
tion time, and they constitute main disincentive to build long communication
sequences. For startup times of the same order as communication time per unit
of load (C), or computation time per unit of load (A) communication sequences
have lengths ≈ 1.4nMIN . For small S the sequences can be approximately 8-
10 times longer on average than nMIN . Moreover, Si, and Bi are in a sense
coupled in determining system performance: small Bis expose costs of commu-
nications including startups, big Sis expose the need for processors with big
communication buffers.

4.3 Number of used processors

In this section we study the number m′ of different processors used. This fea-
ture of a solution has a practical meaning. Considering big pools of processors
available in contemporary grid and cluster systems it is of practical importance
to know how many processors should be used, and how to adjust their num-
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Figure 10: Relative number m′

m of different used processor in the solutions of

GA a) vs. V , b) vs. A c) vs. B
V , d) vs. S.

ber to changing characteristic of the system and application. Let us start with
some observations. It is not difficult to coin instances where only one processor
may be used (e.g. because all other processors have their startup times greater
than schedule length) or all processors must be used (e.g. identical processors,
no startup time, huge V ). It is known fact from divisible load theory that if
∀i, Si = 0, then computations can be started on arbitrary number of processors.
On the other hand if ∃i, Si > 0, then for single installment processing using
all processors is a matter of sufficiently big volume of load V . Thus, it may
be intuitively expected that the number of used different processors m′ should
grow with decreasing startups and increasing V .
Let us now analyze the features of GA solutions. Relations between the

ratio m′

m and selected parameters are shown in Fig.10. It can be seen in Fig.10a
that with growing amount of load V the number of different used processors
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is growing as could be intuitively expected. This result was confirmed in all
experiments we performed. This has a practical consequence, that for bigger
problems it is profitable to use more processors instead of relying on bigger
number of load chunks n only.
The dependence of m′ on A is show in Fig.10b. Only for small problem sizes

(small V ) does m′ increase with A. For small V only a few chunks need to be
sent. Therefore, for small A the algorithm minimizes schedule be selecting only
a few processors with big memory buffers and fast communication link. For big
A computing time dominates schedule length, and it is profitable to distribute
and parallelize computations. Hence m′

m is growing. On the other hand, for big
V the number of chunks must be big anyway, computation time (mainly startup
times Si) is dominating over communication time, and A is less important in
determining schedule length. Therefore, A is not influencing m′ for big V .
In Fig.10c dependence of m′

m on
B
V is shown. In our method of test instance

generation average number of processors is ≈ 5. Hence, for B
V < 1

5 the memory
space necessary to process load V is created by using many load chunks, and
many processors working in parallel. On the other hand, when B

V > 1
5 the size of

memory is sufficient to process the whole load in just one installment. Therefore,
good solutions tend to use only a few processors with fast communication and
computation.
Fig.10d shows relation between S, V , and m′

m . With growing amount of load
V the number of different used processors is increasing as in other experiments.
For small V the number of different used processors decreases with S which is in
accord with our earlier expectations. However, for big V the increasing S results
in increasedm′. This counterintuitive behavior partially can be explained by the
way of generating test instances. Note that startup times of all processors are
equal in the experiments depicted in Fig.10d. When V is big then the number
of sent chunks must be also big. With growing S startup times dominate in
the schedule length and other parameters, by which the processors differ, are
becoming meaningless. Therefore, GA becomes myopic to the differences in
processor parameters, and hence more processors are drawn to the solutions.
Dependence of m′

m on C (not shown here) is very weak. This is a very
surprising situation because in many DLT papers communication rate C was
considered crucial for system performance. Only for small V and big C (close
to 1) is the number of used processors slightly decreasing with growing C. This
is a result of the startup time domination in communication time. Only for
small V the number of messages is small and hence startups is small. Then,
GA optimizes the schedule by using few efficient processors. This result does
not eliminate C as an important performance determinant, as will be shown in
the following study.
We finish this section with the following conclusions. The number of different

used processors differs depending on the settings. In general it is increasing
with V . In our experiment setting startup times dominated schedule length,
especially when the number of chunks had to be big because V was big or B
was small. When A is big and computation time is at least comparable with the
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Figure 11: Gini index of the GA solutions a) GiL vs. V , b) GiL vs. A, c) GiL
vs. B

V , d) Gi# vs. S.

communication time, then it is profitable to use many processors to parallelize
computations. When C is big and its contribution to the communication time
is comparable, or greater, than the contribution of the startup times, then it is
profitable to choose few processors with small C.

4.4 Dominating Set of Processors

Observe that previous section considered only the number of different used
processors, not the degree of participation in computations. Here we analyze
distribution of the load between the processors. We want to determine if there
is any inequality in the load distribution, and if it is the case, then what kind
of processors dominate in the computations.
As the first tool in analyzing inequality in the load distribution we applied

Gini index. Gini index is an indicator of some parameter deviation from the
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uniform (flat) distribution. It is commonly used in economics to quantify in-
equality in wealth distribution. The closer Gini index is to 0 the more equal
and uniform distribution of the load is. The closer Gini index is to 1, the more
unequal distribution of the parameter is. We calculated Gini indices for the load
received by the processors (which we will denote GiL), and for the number of
communications (which we will refer to as Gi#). For example, GL = 1 implies
that whole load V is processed by a single processor. Selected results are pre-
sented in Fig.11. The general observation was that GiL, and Gi# have similar
shape and demonstrate the same tendencies.
It can be seen in Fig.11a that GiL is decreasing with V which means that

with growing size of the load the distribution of the load is becoming more and
more equal. This situation has been observed in all experiments. Dependence of
GiL on A is shown in Fig.11b. Only for small V does A influence load distribu-
tion. For small V the number of used processors is small and it is profitable to
select the best of them, while for big V the number of load chunks must be big
anyway which means that communication time is long and computation time
(hence A) has little influence on schedule length. Consequently, for big V values

of GiL do not depend on A. This situation is similar to Fig.10b depicting m′

m

vs A. A strong change of GiL with B
V is observed in Fig.11c when

B
V ≈ 1

5 . For

smaller values of B
V the load distribution is more equal, for bigger

B
V the load

distribution is more unequal. This means that for B
V > 1

5 only one installment
is sufficient to process the whole load. These results conform with the results
depicted in Fig.10c. In Fig.11d Gi# is shown for changing S. Again, similarly
to Fig.10d, with growing S the diversity of used processor sets depend on V .
For small problem sizes it is profitable to use fewer processors, hence Gi# is
big which signifies inequality. For big V the number of used processors is big,
communication startup times dominate in the schedule length, and the algo-
rithm becomes myopic to the differences in processor parameters, hence more
of them get to the communication sequence, and the messages are distributed
more equally.
Unfortunately, Gini index is hard to interpret. For example, it is hard to

say if certain value of GiL, Gi# already represents inequality or not. Only
general tendencies of changing inequality can be observed. Here, the tendencies
of Gini index confirm the analysis of the number of used processors. Therefore,
we applied one more index of load distribution inequality.

The second measure of processor domination in computations is based on the
set of processors most frequently receiving the load or messages. Let pmax be the
greatest number of load chunks sent to a single processor. Processors receiving
at least pmax

2 messages will be called communication frequent. We will say that
the set of all communication frequent processors is communication frequent set.
Similarly, let Vmax be the greatest total load received by any processor. We
will say that some set of processors is load frequent if it includes all processors
which receive at least Vmax

2 units of load. The processors in load frequent set
are called load frequent.
We want to examine how much load, and messages are sent to frequent
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Figure 12: Load frequent processor sets in GA solutions. a) number of frequent
processors vs. A, b) number of frequent processors vs. V , c) load of the most
loaded processor and d) load of all the frequent processors vs. A, B

V , C, S.

processor sets. The results of this study are shown in Fig.12. All values shown
in this figure are relative. Thus, processor numbers are shown with respect to
m, and the loads are shown relative to V . In Fig.12c,d, the horizontal axes
represent all parameters A, B

V , C, S, in range [0, 1] for four different relations.
A general observation is that the characteristics of load frequent sets are very
similar for the communication frequent sets. Therefore, we will present the
results for load frequent processors only and we will refer to them as to just
frequent processors. Another general observation is that the functions of the
number of load frequent processors in A (Fig.12a), and in B

V , C, S (not shown

here) have very similar tendencies as the functions of m′

m in the above parameters
(see Fig.10). However, the range of changes of the frequent processor number

vs. V is narrower than the range of changes in m′

m . For example, in Fig.10a the
number of used processors changes in range approx. [0.4,1]. Here, the range
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of changes is approx. [0.3,0.5] (Fig.12b). Even smaller ranges were observed
in the experiments with changing B

V , C, S. It can be concluded that the size of
frequent set of processors is growing with V , but not as quickly as the number
of different used processors m′. It is because only a selected set of processors
is frequently used while many other processors get to the solution due to the
randomized selection.
In Fig.12c the load of the most frequently used processor is depicted vs.

changing A, B
V , C, S. Independently of the type of changes the most loaded

processor receives 0.6-0.75V on average. With growing A computation time
starts dominating in schedule length, the processor selection method tends to
build more computing power, and more processors are appended to the frequent
set. Hence, the greatest piece of load sent to a single processor is diminishing.
Growing B

V allows for using fewer processors and for economizing on communi-

cation time. Hence, for big B
V the most loaded processor receives almost 0.75V .

For small B
V a big number of communications must be made anyway which ex-

pose the cost of communication startup times dominating in the schedule length.
Consequently, GA becomes myopic to other processor parameters, the frequent
set has more processors, and the load is more dispersed between the processors.
The dependence on S is shown in Fig.12c is very weak. Note that this is an
average over many sizes V . A more detailed picture exposes diversity with V
similar to the one shown in Fig.11d, though in much narrower range. Unlike in
Fig.11d the load sizes are generally decreasing with S, even for small loads V .
Similarly to the results in Section 4.3 the biggest piece of the load received by
a single processor does not depend on C.
The sum of the load assigned to all frequent processors is show in Fig.12d. As

it can be seen the frequent processor set collects more than 0.8V on average. The
function of the total load vs. B

V has a minimum. This unexpected phenomenon

can be explained in the following way. For big values of B
V only a few processors

take part in the computation because a single installment is sufficient to process
the whole load. Therefore, the number of messages is small, load chunks have
sizes close to processor memory buffer sizes, the frequent set has small cardi-
nality and receives whole load. With decreasing B

V more and more processors
receive some load, an the contribution of the most loaded processor(s) is de-
creasing as depicted in Fig.12c. However, when B

V becomes extremely small,
communication cost is dominating schedule length, GA becomes unaware of
processor parameters, and more of the processors are randomly included in the
frequent set. Therefore, the cardinality of the frequent set is growing and also
the total load in the frequent set is growing.
We finish the above exercise with a conclusion, that the frequent set of

processors really exists. With the exception of the instances biased by small B
V

or big S, when almost all processors are frequent, the frequent set has approx.
40 − 50% of all available processors. They received 80-85% of the whole load,
again with the exception of the cases biased by small B

V or big S.

The results in Fig.11, and Fig.12 confirm that the set of processors receiving
more load, and hence dominating in the computation exists. Yet, consider the
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Figure 13: Load and number of messages vs processor rank in GA solutions. a)
Load vs rank, b) Number of chunks vs rank.

method of test instance generation. When studying influence of a certain para-
meter, all processors have this parameter equal. We learned on the importance
of the considered parameter via the consequences of its low, or high, values.
But effects of the diversity of the given parameter were switched off. We did
not verify how important this parameter may be if it had different values in
the processor set. Therefore, a second set of 1000 instances were generated with
V = 100, m generated from U [1, 100], and A, B, C, S parameters generated from
U [0, 1]. We examined the fraction of the whole load and the number of received
messages against the rank of processors in the order of certain parameter value.
The results of this study are shown in Fig.13.
In Fig.13 processors were grouped into sets comprising 10% of the processors

ranked according to certain parameter. For example, value 0.3 on the horizontal
axes in Fig.13 represent processors with relative rank i

m in the range (0.2, 0.3].
The four functions depicted in Fig.13 correspond to four different rankings:
according to A, B, C, S. Let us remind that for A, C, S smaller values represent
better performance, and for B bigger values are better. The relationships are
similar for the received load (Fig.13a) and for the number of messages (Fig.13b).
Hence we will discuss only the load distribution. The distribution of the load
is tightly connected with all processor parameters. It is evident that processors
which have best communication links with respect to C, and S, the biggest
memory buffers receive most of the load to process. The processors with small
B, and big S, C, receive almost no load. For A the relationship is weaker but
it is still noticeable (coefficient of correlation between A and the upper limit of
rank box interval is ≈ −0.84).
We finish the study of the dominating set of processors with the following

observations on the basis of computational experiments:

• the dominating processor set exists,
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• the frequent processors set, as we defined it, comprises approximately 40-
50% of all processors,

• in the biased case of big S, and small B
V frequent processor set may include

nearly all processors,

• there is a strong correlation between parametersCi, Si, Bi, and the amount
of load received for processing.

4.5 Chunk Size Saturation

Another feature of problem solutions is load partitioning. After determining
the sequence of communication and the overlaps, a linear program was used to
find load distribution. Since the computational cost of linear programming may
be considered high, it would be profitable to eliminate it in constructing good
quality solutions. To examine the structure of load partitioning we analyzed the
number of chunks which sizes equal the size of the target processor buffer, i.e.
αi = Bσ(i). We will call such chunks full chunks. It would be a very attractive
solution to use just the processor buffer size as chunk size, thus eliminating the
need for linear programming. The results of this exercise are shown in Fig.14.
In all figures shown in Fig.14 the number of full chunks is shown in relation

to the total number of chunks n. The number of full chunks is almost always
high or noticeable, but not all chunks are full. As it can be seen if Fig.14a,b,d,
with growing size V the number of full chunks is also growing. This is intuitively
reasonable because bigger load V requires more messages which expose costs of
the startup time. These can be reduced by using as few messages as possible,
and consequently filling the bufferers more completely. This is also confirmed in
Fig.14c where the number of full chunks is shown against changing B

V , and var-

ious values of V . When B
V is small the number of messages must be big, hence

the startup times dominate in the schedule length, and to reduce their contri-
bution, the buffers are more fully filled. This situation is repeated in Fig.14d
where the number of full chunks increases with the startup times. With growing
A (Fig.14b) the number of full chunks is decreasing because the computation
time starts dominating in the schedule length, not the startup times. Note that
in Fig.14c the number of full chunks decreases with V , which may be attributed
to the randomized nature of GA. With growing V greater number of messages
must be sent. The message target processors are generated randomly. Hence
with growing V chances are growing that a slow processor, or a processor with
slow communication link may be selected to the communication sequence. The
linear part tries to minimize influence of such bad choices by reducing chunk
sizes. Hence with growing V the fraction of chunks which are not full also grows.

4.6 How Hard It Is To Find a Good Solution

In this section we study what makes our problem easy, or hard to solve. Let us
introduce the goal of this section in more detail. Heuristics build good quality
solutions for many combinatorial optimization problems. However, this good
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Figure 14: Average number of full chunks in GA solutions. a) vs V in experi-
ments with changing A, b) vs A, c) vs B

V , d) vs S .

performance should be attributed to the nature of the problem, not a heuristic.
Thus, it is possible that our genetic algorithm builds good solutions not because
it is well designed, but because our scheduling problem may be easy to solve. If
we learn which instances are easy, or hard, to solve then we will gain some new
insights into the nature of the problem, and real merits of GA.
Now the problem is how to verify which instances are easy, and which ones

are hard to solve. We will compare quality of the solutions obtained in three
ways for various types of instances. The worst solution observed provides an
indication on how bad a solution may be. The random solutions are not biased
to being good or bad. GA solutions represent solutions which are optimized, and
supposed to be good. The three solution types indicate what can be achieved in
the worst case, without great efforts (random solutions), and at considerable cost
of optimization. If GA solutions did not differ much from the random solutions,
then it would signify bad GA design. All three algorithms were obtained using
the GA infrastructure. The random solution is the best one in the initial GA
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Figure 15: Quality of the solutions with reference to the lower bound for V = 20.
a) vs C, b) vs B

V , c) vs S, d) vs the dispersion of S.

population of G = 20 solutions. The worst solution is the worst one observed
in the course of solving some instance by GA. In all three algorithms linear
programming was used to obtain the best chunk sizes αi, and schedule length, for
the given combinatorial part of the solution. Quality of the solutions is measured
as the relative distance from the lower bound calculated in the following way.
The minimum communication time is τ1 = nMINSmin +V Cmin, where Cmin =
minm

i=1 Ci, Smin = minm
i=1 Ci. In this time at most V0 = (τ1 − Smin)

∑m
i=1

1
Ai

load could be processed. The remaining load V − V0 is processed in time at
least equal to max{0, V∑

m

i=1
1/Ai

− τ1 +Smin}. Thus the lower bound is equal to

τ1 +max{0, V∑
m

i=1
1/Ai

−τ1+Smin}. We will examine performance of these three

types of solutions for changing values and dispersion of system parameters.
In Fig.15 we have shown influence of the system parameters on the quality

of the above three solution types. Fig.15a,b,c show results for the first set of
random instances and V = 20. It is striking that the worst case solutions
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(denoted WRST ) can be over one order of magnitude further from the lower
bound than the random solutions (denoted RND) or the solutions of the genetic
algorithm (denoted GA). Moreover GA solutions are substantially better than
RND solutions. Hence, GA really works. Now let us analyze the tendencies in
Fig.15a,b,c. As it can be seen in Fig.15a with growing C all the lines tend to 1
which means that communication speed is decreasing, schedule length becomes
dominated by the time of sending load off the originator. Hence in such a biased
case it is getting easier to obtain good solutions. Similar tendency was observed
for growing parameter A.
In Fig.15b the dependence of solution quality on changing B

V is shown. With

growing B
V all the three types of solutions get closer to the lower bound. It

is intuitively attractive to conclude that with growing B
V good solutions are

easier to obtain because we are less limited with the choice of the processor.
Not disregarding this growing flexibility, it should not be forgotten that the
construction of the lower bound influences the results presented here. The lower
bound is based on the assumption that the smallest Si coincide with the biggest
Bi which is rarely true. Hence, for small

B
V and big number of the startups

the error resulting from this simplification is significant. With increasing B
V

the domination of the startup costs in the schedule length decreases, and the
lower bound is representing this situation better. Thus, the results in Fig.15b
indeed confirm that with growing B

V it is getting easier to obtain good quality
solutions, however, it is achieved by using fewer messages and communication
startup times. Moreover, for the biggest B

V solutions WRST, RND are getting
slightly worse and GA solutions are not. This means that even if memory buffers
are big it its necessary to adjust the set of used processors. Genetic algorithm
is doing it better than in the RND solutions.
In Fig.15c dependence of the three types of solutions on changing parameter

S is shown. A counterintuitive tendency of improving WRST solution quality
with growing S can be observed. With growing S the contribution of the startup
time to schedule length is growing, independently of the chosen set of processors.
Therefore, the difference between the worst solution and the lower bound is
decreasing with growing S. Genetic algorithm is performing better than RND
because it is able to build solutions with relative quality improving even with
increasing domination of the startup time.
In Fig.15d quality of the solutions for growing dispersion of S is shown. The

test instances for Fig.15d were generated as in the first set of instances with
V = 20, except for parameter S which was generated with uniform distribution
from range [1−δC

2 , 1+δC

2 ]. The value of δC is shown on the horizontal line in
Fig.15d. As it can be seen with growing δC , and hence heterogeneity of the
system, quality of all three types of solutions is worsening. This means that our
problem is becoming harder to solve with growing heterogeneity of the comput-
ing environment. Similar experiments were performed for controlled dispersion
δA, δB, δC of parameters A, B

V , C, respectively. In all cases the dependence of
the quality of solutions on the range of diversity has very similar shape which
once again confirms that in heterogeneous systems good quality solutions are
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harder to obtain. Let us use the range of change of the worst-case solutions
quality as an indicator of the sensitivity to the dispersion of certain parameter.
For δS changing from 1E-3 to 1 the average distance from the lower bound grew
≈ 34 times. For similar changes of: 1) δC the distance changed ≈ 14 times, 2)
δA changed ≈ 1.8 times, 3) δB changed ≈ 1.3 times. This means that diversity
of S, C have the strongest influence on difficulty of obtaining good solutions,
and diversity of A, B

V the smallest.
We finish this section with the following conclusions.

1. It is easier to obtain good quality solutions when communication time or
computation time dominate in the schedule length

2. It is easier to obtain good quality solutions for big memory buffers.

3. It is easier to obtain good solution quality for homogeneous systems. So-
lution quality is particularly sensitive to the dispersion of communication
parameters S, C, and less to the dispersion of A, B

V .

4. Genetic algorithm really works, because it builds considerably better so-
lutions than RND. Moreover, in some cases it is able to counteract the
general tendencies of solution quality represented in RND, WRST .

5 Conclusions

In this paper we analyzed scheduling divisible loads on heterogeneous systems
with communication startup times, limited memory buffers and multi- round
load distribution.
In the first part of this paper a new, more realistic model of memory man-

agement was assumed. The problem of determining optimum communication
schedule and load chunk sizes has been formulated as a mixed nonlinear pro-
gram. This mixed nonlinear program has been reformulated for better solvabil-
ity. Two parts in the solution can be distinguished: a combinatorial and an
algebraic part. Two methods for solving the combinatorial part were proposed:
branch and bound algorithm, and a genetic algorithm. The algebraic part is
solvable by a linear program on condition that a solution from the combinatorial
part is provided. The branch and bound algorithm turned out to be impracti-
cable due to its prohibitive complexity. Therefore, in the following studies we
relied on the solutions from the genetic algorithm.
In the second part of the paper we studied features of the solutions of our

scheduling problem. The study was performed both analytically and by exten-
sive computational experiments. Among the other, the following observations
were made:

• It has been established that in the worst case arbitrarily big amount of load
may have to be accumulated in the optimum solutions. By this feature
multiprocessor schedules differ from the optimum schedules on a single
processor. However, it turned out that in the near-optimum solutions
obtained by the genetic algorithm accumulating the chunks is very rare.
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• There is a minimum number of messages that must be sent to the proces-
sors anyway, it follows from the greatest processor buffer capacities. It
can be shown that using this number of communications may result in
arbitrarily bad solutions. In computational experiments it has been es-
tablished that the number of messages is a small multiple of the minimum
possible (1.4-10). Communication startup time is the main disincentive to
using great number of messages in delivering the load to the processors.

• There is inequality in load distribution and a dominating set of processors
receives most of the load. The size of the dominating set of processors is
growing with size of the load V . There is a strong correlation between
the parameters of a processor, and its contribution in load processing.
Processors with faster communication links, bigger memory buffers, and
computing faster receive more load. It appears that the order of parameter
importance in load distribution is Ci, Bi, Si, Ai.

• Majority of, though not all, load load chunks carry maximum load, i.e.
equal to the size of processor buffer. The number of full chunks grows
with V , and is strongly correlated with Si, Bi.

• The problem has natural tendency to become easier to solve when one
parameter dominates in the schedule length. For example, big values of
all Ai, and small Ci, Si simplify obtaining good solutions.

• Another side of the above observation is that it is relatively easy to build
biased instances which solutions are dictated by extreme values of certain
parameter, e.g. extremely slow communication, or computation, or very
small memory buffers.

• In a sense, parameters Bi and Si go together when building a biased
instance. Small memory buffers Bi incur many communications which
expose cost of the startup time Si. And vice versa, big startup times
may be compensated by use of long messages which require big memory
buffers.

• Good quality solutions are harder to obtain in heterogeneous systems.

We believe that the above set of observations may be helpful in constructing
new, faster and still effective heuristics for the scheduling problem.
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