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Abstract

In this paper we analyze MapReduce distributed computations as
divisible load scheduling problem. The two operations of mapping and
reducing can be understood as two divisible applications with prece-
dence constraints. A divisible load model is proposed, and schedule
dominance properties are analyzed. We investigate dominant sched-
ule structures for MapReduce computations. To our best knowledge
this is the first time that processing divisible loads with precedence
constraints is considered on the grounds of divisible load theory.
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1 Introduction

Divisible load theory (DLT) is a model of distributed processing. It assumes
that the computations can be divided into pieces of arbitrary sizes and that
there are no precedence constraints between these pieces. Thus, the pieces
of work can be processed independently on remote computers. The divisible
work is generally termed load, and in most of the cases refers to computa-
tions on big datasets. There are many examples of divisible load applications,
including search for patterns in text and database files [14], processing mea-
surement data [8], image and video processing [17, 18, 19] and linear algebra
[10, 15]. Applications on platforms BOINC and distributed.net also fulfill
the divisibility and independence of load grains assumptions. Thus, DLT
delivers a method of analyzing a broad class of parallel computations.
Divisible load model originated in the late 1980s [1, 8]. It has been ap-

plied to represent distributed computations in a network of workstations [1].
A chain of intelligent sensors was analyzed in [8]. Both publications consider
a problem of partitioning the computation so that the total processing time
is as short as possible. On the one hand distributing the computations re-
duces processing time by employing additional processors. But on the other
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hand, communications cost time. Hence, the problem is what amounts of load
should be sent to which processors. The mathematical model proposed in the
early publications reduced the scheduling problem to a system of linear equa-
tions. Later on, DLT branched in many new directions covering scheduling
problems for various types of interconnection networks [8, 9, 13, 6], memory
limitations [16, 3], costs of computation [21], and other. The NP-hardness
of the most general divisible load scheduling problem was proved in [22].
Surveys of DLT can be found e.g. in [2, 4, 12, 20].
In this paper we analyze MapReduce distributed computations as divis-

ible load scheduling problem with precedence constraints. MapReduce is a
programming model for processing large data sets on big numbers of com-
puters [11, 23]. The idea of MapReduce is outlined in the next section. We
propose a divisible load model of MapReduce, and analyze properties of the
optimum schedules..
The rest of this paper is organized as follows. In Section 2 we describe

MapReduce. We formulate its mathematical model and introduce notation
in Section 3. Section 4 is dedicated to computations with a single reducer,
and Section 5 to processing with many reducers.

2 Outline of MapReduce

MapReduce can be implemented in many ways, and indeed it has various
implementations [23]. Here, we will outline MapReduce as described in [11].
In a nutshell, MapReduce computations consist in processing input data sets
by creating a set of intermediate (key,value) pairs, and then reducing them
to yet another list of (key,value) pairs. The computations are performed in
parallel.
More precisely, MapReduce applications are divided into two steps. In

the first step a Map function processes the input dataset (e.g. a text/HTML
file), and a set of intermediate (key1, value1) pairs is generated. In the sec-
ond step the intermediate values are sorted by key1, and a Reduce function
merges the intermediate pairs with equal value of key1, to produce a list of
pairs (key1, value2). Thus, the input dataset is transformed into a list of
key/value pairs. Let us consider examples given in [11]. Counting occur-
rences of words in a big set of documents can be organized in the following
way. Map function emits intermediate pair (word, 1) for each word in the
input file(s). The intermediate pairs are reduced by summing 1s, and pro-
ducing pairs (word, count). In the inverted index computation all documents
comprising certain word must be identified. The Map function emits pairs
(word, docID), where docID is a document identifier (e.g. a URL of a web
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page). In the reduce function all (word, docID) pairs are sorted, and pair
(word, list docIDs) is emitted, where list docIDs is a sorted list of docIDs.
There are many types of practical applications which can be expressed in
MapReduce model. More detailed and advanced examples are given in [11].
Both map and reduce operations are performed in parallel in a distributed

computer system. Processing a MapReduce application starts with splitting
the input files into load units (in [11] called splits). Many copies of the
program start on a cluster of machines. One of the machines, called master,
assigns work to the other computers (workers). There are m map tasks and
r reduce tasks to assign. In the further discussion map tasks will be called
mappers, and the reduce tasks reducers. A worker which received a mapper
reads the corresponding input load unit and processes the data using theMap
function. The output of this function is divided into r parts by partitioning
function and written to r files on the local disk. Each of the r files corresponds
to one of the reducers. Usually the partitioning function is something like
hash(key1) mod r. The information about local file locations is sent back to
the master, which forwards it to the reduce workers.
When a reduce worker receives this information, it reads the buffered

data from the local disks of the map workers. After reading all intermediate
data, the reduce worker sorts it by the intermediate keys in order to group
together all occurrences of the same intermediate key. Each key and the
corresponding set of values are then processed by the Reduce function. Its
output is appended to a final output file for a given reducer. Thus, the output
of MapReduce is available in r output files. The execution of MapReduce is
completed when all reducers finish their work.

3 Toward a Model of MapReduce

In this section we formulate mathematical model of MapReduce computa-
tions. We will pass from ’microscopic’ view of the computation to a coarser
’macroscopic’ model used in the following sections. We simplify percep-
tion of MapReduce computations to build mathematically and conceptually
tractable representation of the complex computing platform and the dis-
tributed application. Notation introduced in the paper is summarized in
Table 1.
We assume that MapReduce applications are executed by identical pro-

cessing elements which have CPU, local storage, independent network inter-
face (e.g. NIC and DMA). Terms processing element, computer, processor,
worker will be used interchangeably. Let Pi denote a processor i. The struc-
ture of the interconnection network is unknown in general. Yet, it is known
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Figure 1: General view of MapReduce schedule structure.

that the bandwidth of the unthrottled communication channels which can be
simultaneously used is limited. We will represent this limitation as the num-
ber l of communication channels which can be simultaneously in use without
reducing the channel communication speed. In other words, if two proces-
sors can communicate with speed 1/C in the otherwise unused network, then
the bandwidth limitation for the concurrent channels in the whole network is
l/C. When referring to the above limit on the number of concurrent channels
in the network we will be saying about bisection width limit. We perceive
the mappers and the reducers in a more coarse way than in [11]. In [11] a
mapper is an application executing Map function for one load unit. The size
lu of the load unit is 16-64MB, and a processor receives approximately 100
load units [11]. Here we will assume that a single mapper is an application
executing Map function for all the load (i.e. all load units) assigned to a cer-
tain processor. Thus, there is one-to-one correspondence between mappers
and processors. Therefore, in the following discussion we can use words pro-
cessor, and mapper interchangeably when referring to source and destination
of data transfers. Let m denote the number of mappers (consequently, also
processors executing them). Similarly, we unify all reducer computations as-
signed to a certain processor to a single (compound) reducer. The number
of reducers is denoted by r. The total size of load to be processed is V (e.g.
bytes).
A rough schedule structure of MapReduce computation is shown in Fig.1.

Detailed schedule structures are analyzed in the following sections. MapRe-
duce computation is divided into several phases which may partially overlap.
In the first stage the code for mapper and reducer applications is loaded on
processors. For the sake of simplicity of presentation we assume that the
mapper and the reducer codes are uploaded together. We assume that most
of the processors read the code from the network file system. The code may
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Figure 2: Microscopic view of Map computation for a single load unit of size.

include virtual machines, libraries, the mapper and reducer codes themselves.
Thus, computation startup time S may be relatively long. The computation
startup time elapses only once because when processing the following load
chunks the code already resides on the executing processor. The differences
in the startup time between the processors are negligible.
In the second phase mappers read load units from the network file sys-

tem, process them, and store the results in r local files for r reducers. A
’microscopic’ view of processing a single load unit of size lu (e.g. in bytes)
by a mapper i is shown in Fig.2. A processor Pi (running mapper i) reads lu
bytes of input in time si + ci ∗ lu. Though computers may be the same, the
load may be read from local or from remote locations. Consequently, si, ci

are different for different processors. The fixed time delay si includes both
communication and computation startup times needed in practice to start
computation, and read load for the next load unit. The lu bytes of input
are processed in time amap ∗ lu. This time comprises both computations and
storing the results in local files. Thus, we assume that from the point of view
of local computations processors are essentially the same, because local com-
puting rate amap is the same for all processors. The total time of processing
a load unit is si + (ci + amap)lu. Since the load read, processing and storing
operations are repeated many times (for an order of hundreds of load units)
we simplify representation of these operations to processing with rate Ai. It
follows from the above discussion that Ai ∗ lu = si + (ci + amap)lu, and the
operations performed by the mapper may be perceived as if processing the
load with average rate Ai = si/lu + ci + amap. Though Ai depends on lu,
the size of load unit is fixed for MapReduce computation, hence also Ai is
constant. In the following discussion we will use this coarse representation
of mapper computations as performed with rate Ai. Let αi denote the total
size (expressed e.g. in bytes) of load assigned to processor Pi (i.e. also to
mapper i). According to the methodology of DLT we assume that αi is a
rational number. This simplification has two implications. First, the load
assignment obtained in our model (e.g. αis) needs rounding to load units
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used in practical MapReduce. We assume that effects of load rounding are
negligible. Second, since processing a load unit requires startup si, the size
of the load unit lu influences via Ai the aggregated speed of computation.
Moreover, it will be assumed that the amount of results produced by mappers
is proportional to the input size. For αi bytes of input γαi bytes of output
are produced.
In the third stage (cf. Fig.1) results stored on the mappers are read by

the reducers. We assume that partitioning function divides the space of key
values into r equal parts. This is achieved by use of hashing in distribut-
ing the mapper output as described in Section 2. Consequently, the size of
the input for each reducer is roughly equal to γV/r bytes in m chunks of
sizes γα1/r, . . . , γαm/r. Each chunk comes from a dedicated file on different
processor. We assume that reducers read the load from the mappers with
equal rate C. There may be some advantages in the communication speed if
the mapper and the reducer are executed on the same processor. Yet, each
reducer has to read its input from all processors and such advantages cancel
out when averaged over the inputs from all mappers. Consequently, we as-
sume that differences in communication rate for the transfers from mappers
to reducers are negligible. Each of r reducers reads its input from Pi in time
γαiC/r provided that there is no bandwidth limitation. At most one channel
can be opened to a mapper with transfer rate C. The methods of incorpo-
rating bandwidth limitations in the communication model are described in
the following sections.
In the fourth stage r reducers sort the input data, perform Reduce op-

erations, and finally in the fifth stage store the results in the network file
system. Let sred denote reducer computation startup time, and ared (in
seconds per byte) the reducer processing rate. Parameter ared represents
both computations, transfers to local disks and storing the results in the
network file system. All reducers receive input of roughly the same size
γV/r. As a consequence, all reducers have roughly equal execution time
tR = sred + τ(γV/r), where τ(x) is the running time of a reducer vs. size
x of the input. We will assume that sorting dominates in reducer execution
time, and τ(x) = ared(x log x). Here we assumed that writing the reducer
results to the network file system in the last stage is contention-free. This
may not be true in general. Precautions to avoid reducers writing contention
are discussed in Section 5.
We assume that reducers are executed on the same processors as map-

pers, but a reducer starts computation after completion of a mapper. Thus,
the mapper and the reducer computations do not interleave on the same pro-
cessor. As a consequence, r ≤ m, yet it is possible to represent also r > m
in our model (cf. Section 5). We exclude simultaneous execution of several
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mappers, or reducers, on the same computer. Were such coallocation possi-
ble, it can be represented in our model as several processors, each running
a different mapper or reducer. If there are other background services exe-
cuted by the processor (e.g. for the network file system), then we assume
that the services influence the processor performance in a constant way. In
other words, simultaneous computation and communication is possible and
performance parameters such as amap, ared, ci, S, si, s

red remain constant.
MapReduce implementation includes procedures to tolerate failures. We

do not include them in our model. However, since some of the fault toler-
ance methods are based on retrying failed computations, these features can
be represented as processing load greater than V (for mappers) or running
additional reducers.
It is possible to optimize schedule length by assigning different amounts of

computations to different reducers. This may be achieved by devising appro-
priate partitioning functions. Then, by better load distribution between the
reducers, more of them may work in parallel and finish computations simul-
taneously. Though it is intuitively advantageous considering minimization of
schedule length, a negative effect is that reducers store their results nearly si-
multaneously, exercising distributed file system performance limitations. To
avoid such a situation, we do not allow for schedule length optimization by
varying size of the load assigned to the reducers.
Our goal is to partition input load of size V into mapper chunks α1, . . . , αm

and schedule mapper to reducer communication so that the whole schedule
length T is as short as possible.

4 Processing with a Single Reducer

In this section we analyze MapReduce computations with a single reducer.
This special case will be used in the many-reducer case in the next section.

4.1 Schedule Dominance Properties

In this section we will show that it is advantageous to start computations
on faster processors first (smaller rate Ai), that results should be returned
in the order of activating the processors, and that sharing bandwidth while
reading mapper outputs is not advantageous.
We will say that the order of reading the results from the mappers by

a reducer is FIFO order if a reducer reads its inputs (mapper outputs) in
the order of starting computations on the mapper processor (Fig.3a). The
opposite sequence of reading the results from the last activated mapper pro-
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Table 1: Summary of notation

αi the load size processed by mapper i; in bytes;
amap, ci, si ’microscopic’ computing rate, communication rate,

communication startup time for processor Pi exe-
cuting mapper application; in seconds; lower is bet-
ter;

ared, sred ’microscopic’ computing rate, and computation
startup time for reducer application, equal for all
processors; in seconds; lower is better;

Ai = si

lu
+ amap + ci ’macroscopic’ computing rate of processor Pi exe-

cuting mapper application;
C communication rate for reading mapper results,

equal for all processors;
γ mapper result multiplicity fraction;
l bisection width limit, in parallel channels
lu size of load unit, e.g. in bytes
m number of mapper processors
Pi processor (i.e. computer) i;
r number of reducer processors
S computation startup time, equal for all processors;
T schedule length;
τ(x) reducer computing time function in load size x;
tR = sred+τ(γV/r) execution time of a reducer;
V size of input load at the start of computation; in

bytes;
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Figure 3: Reducer read orders. a) FIFO schedule structure, b) LIFO schedule
structure.

cessor, and finishing with the first mapper activated will be called LIFO order
(Fig.3b). The results can be read from the mappers sequentially. This means
that only after reading the whole file from mapper i can a reducer start read-
ing the file from mapper i+1 (in the given FIFO, or LIFO sequence). In the
opposite case a reducer may open two communication channels to mappers
i and i + 1 and read the files concurrently. In the latter case the bandwidth
1/C of the input to the processor running a reducer is shared equally by both
channels. In the following lemma we argue that faster processors should start
computations first, and that results should be read sequentially in the FIFO
order.

Lemma 1 A schedule activating faster mapper processors first, with sequen-

tial FIFO reducer reads is optimum.

Proof. We will show that the above schedule structure is optimum by
comparing the amounts of loads processed by mapper processors in given
time T against different schedule organizations. The schedule structure pro-
posed above allows for processing bigger load in T than in other schedules.
Therefore, it also allows for processing given load V in the shortest time.
Let us first analyze FIFO structure (see Fig.3a) with bandwidth sharing.

A reducer reads from the first mapper γα1 load. Let 0 ≤ γβ1 ≤ γα1 be the
part of the load read from the first mapper while the second mapper is still
computing. The remaining part γ(α1−β1) is read in parallel with the results
from the second mapper. The speed of reading mapper results is determined
by the shared bandwidth 1

C
of the reducer input interface. Thus, we have

the following relationships in the computing and communication times:

P1 : S + α1A1 + β1γC + (α1 − β1 + α2)γC = T (1)
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P2 : 2S + α2A2 + (α1 − β1 + α2)γC = T (2)

from which we obtain

P1 : S + α1(A1 + γC) + α2γC = T (3)

P2 : 2S + α2(A2 + γC) + (α1 − β1)γC = T. (4)

From (3) we obtain

α2 = (T − S − α1 (A1 + γC)) /γC (5)

which substituted in (4) yields

α1 =
TA2 + SγC − SA2 − β1γ

2C2

A1A2 + A1Cγ + A2Cγ
. (6)

Returning with α1 to (5) load α2 is

α2 =
TA1 − 2SA1 − SγC + β1γCA1 + β1γ

2C2

A1A2 + A1Cγ + A2Cγ
. (7)

Together we have

α1 + α2 =
(T − S)(A1 + A2) − SA1 + β1γCA1

A1A2 + A1Cγ + A2Cγ
. (8)

Note that the above load is increasing with β1. Hence, it is the biggest
if β1 = α1. This means, that the bandwidth is not shared while reading
results from the second mapper. Therefore, equation system (3)-(4) gets the
following form:

P1 : S + α1A1 + (α1 + α2)γC = T (9)

P2 : 2S + α2(A2 + γC) = T. (10)

From (10) we obtain

α2 =
T − 2S

A2 + γC
, (11)

and by observing that S + A2α2 = α1(A1 + γC) (cf. Fig.3a) we get

α1 =
TA2 + SγC − SA2

(A1 + γC)(A2 + γC)
, (12)

The total processed load is

α1 + α2 =
T (A1 + A2) + TγC − 2SA1 − SA2 − SγC

(A1 + γC)(A2 + γC)
(13)
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Let us now analyze the LIFO result reading order (cf. Fig.3b). First let
us check if bandwidth sharing while reading mapper results is profitable. Let
0 ≤ γβ2 ≤ γα2 be the part of results read by a reducer from P2 while P1 is
still computing. Analogously to (3), (4) we obtain in LIFO case:

P1 : S + α1(A1 + γC) + (α2 − β2)γC = T (14)

P2 : 2S + α2(A2 + γC) + α1γC = T. (15)

From (15) we derive α1 and substitute it in (14) from which we obtain

α2 =
TA1 − SγC − 2SA1 − β2γ

2C2

A1A2 + A1Cγ + A2Cγ
. (16)

By substituting α2 in (15) we have

α1 =
TA2 − SA2 + SγC + β2A2γC + β2γ

2C2

A1A2 + A1Cγ + A2Cγ
. (17)

Together the processed load is

α1 + α2 =
(T − S)(A1 + A2) − SA1 + β2A2γC

A1A2 + A1Cγ + A2Cγ
. (18)

As in (8) it is a function strictly increasing with β2. Hence, it is most effective
to make β2 = α2, i.e. maximum possible. Consequently, bandwidth sharing
while reading results from the two mappers is not profitable. Now we will
calculate what load is processed in the LIFO mode in the given T , provided
that β2 = α2. From (14)

α1 =
T − S

A1 + γC
. (19)

By observing that A1α1 = S + (A2 + γC)α2 and using the above value of α1

we get

α2 =
TA1 − 2SA1 − SγC

(A1 + γC)(A2 + γC)
(20)

Together the load processed in LIFO mode without bandwidth sharing is

α1 + α2 =
T (A1 + A2) + TγC − 2SA1 − SA2 − 2SγC

(A1 + γC)(A2 + γC)
. (21)

Comparing (13) and (21) we see that FIFO order of reducer input reading is
more profitable because the numerator in (13) is bigger by SγC.
It remains to determine the optimum order of starting computation on

processors. If we switch the order of activating processors from (P1, P2), to
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Figure 4: A schedule structure for a single reducer.

(P2, P1) then the processor indices in (13) get swapped and the processed
load is

α′
1 + α′

2 =
T (A1 + A2) + TγC − 2SA2 − SA1 − SγC

(A1 + γC)(A2 + γC)
(22)

Subtracting α1 + α2 in equation (13) from α′
1 + α′

2 in the above equation we
get

(α′
1 + α′

2) − (α1 + α2) =
SA1 − SA2

(A1 + γC)(A2 + γC)
. (23)

Thus, the load processed in time T increases after the swap only if A1 > A2.
This means that in the order (P1, P2) we would have started computations
on a slower processor first. Hence, the faster processor should start compu-
tations earlier. 2

In the above lemma we demonstrated that sharing bandwidth while read-
ing outputs from the mappers is not profitable both in LIFO, and FIFO order
of reading. Of the two orders FIFO is better, and for FIFO faster processor
(i.e. with smaller Ai) should be started first. This result can be iteratively
extended to more than just two mappers.

4.2 Load Partitioning

In this section we introduce a method for optimally partitioning the load
between the mappers if only one reducer exists. Let us remind that from
Lemma 1 it follows that the mappers should start computation in the order
of increasing Ais, the outputs from the mappers are read sequentially. Let
us assume that processors P1, . . . , Pm running the mappers are numbered
according to increasing Ais, i.e. A1 ≤ A2 ≤ . . . ≤ Am. A schedule for the
above setting is shown in Fig.4. From Lemma 1 and from Fig.4 we infer that
the time of computing on processor Pi and reading its results is equal to the
time of starting and computing on processor Pi+1. Hence we get a system of
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linear equations determining load partitioning.

(Ai + γC)αi = S + Ai+1αi+1 for i = 1, . . . , m − 1 (24)
m

∑

i=1

αi = V (25)

The above linear system can be solved in O(m) time for αis by reduction of
αi to affine linear functions of αm, i.e. αi = li + kiαm. More precisely, from
(24)

lm = 0 km = 1 (26)

αi =
S

(Ai + γC)
+

Ai+1

(Ai + γC)
αi+1 =

=
S

(Ai + γC)
+

Ai+1

(Ai + γC)
(li+1 + ki+1αm) =

= li + kiαm for i = m − 1, . . . , 1 (27)

By substituting αis in (25) we obtain

αm =
V −

∑m
i=1 li

∑m
i=1 ki

(28)

and the remaining αis are obtained from (28), and (27). Let us note, that
αm in (28) may be negative. This negative solution is a demonstration that,
at the current parameters Ai, γ, C, S, V , the number of processors m is too
big to use them all. Therefore, if αm < 0 then the number of processors m
must be reduced.
In the current case the total schedule length is (cf. Fig.4).

T = mS + αmAm + tR = S + α1A1 + γCV + tR, (29)

In the above reasoning we assumed that on average (over all communications
from the mappers) there is no advantage in particular reducer placement,
and the reducer can be executed on any processor in the cluster. Were it
otherwise, the above method of load partitioning can be generalized by using
different communication rates instead of C in equations (24).

5 Many Reducers

In this section we tackle load partitioning and communication scheduling for
more than one reducer. Unfortunately, a generally optimum schedule struc-
ture, similar to the one defined in Lemma 1 for a single reducer, does not
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seem to exist for many reducers. Quite contrary, it will be shown in the
next subsection that each of the alternative schedule structures with many
reducers can dominate the other under certain conditions. As a consequence,
we introduce in the following three methods of load partitioning and com-
munication scheduling.

5.1 Schedule Dominance for Multiple Reducers

Here we will show that none of several alternative ways of reading results from
the mappers by reducers is generally optimum. As suggested by Lemma 1
we assume FIFO order of finishing computations on the mappers and that a
single reducer is not reading results from two (or more) mappers in parallel.
As explained in Section 3 the amounts of load read by all reducers are the
same. The actual processors running the reducers can be arbitrary free ma-
chines. For example, P1 can execute reducer 1 after completion of mapper
1, or it can be some other processor from a separate computer pool if such
pool exists.
The alternative communication schedules are shown in Fig.5. In the first

schedule type (Fig.5a) the end of reading results from Pi by the first reducer
is synchronized with the end of computations on Pi+1. Note that in this
schedule different reducers read different mapper results in parallel which may
violate bisection width limit. For the time being, we assume that bisection
width is not exceeded. We will call this schedule type case A. In the second
type of schedule (Fig.5b) reducers read output from the mappers sequentially.
The end of reading output by the last reducer from mapper Pi coincides with
the end of computation on mapper Pi+1. Here all reducer reads are sequential,
only one communication channel is used at the time therefore the speed of
communication is the same as in one-to-one communication without network
contention. We will refer to the second type of schedule as to case B. In
the third type of the schedule (Fig.5c) reducers read results from mappers
one by one, but bandwidth is equally shared between the reducers. The
end of reading from mapper Pi coincides with the end of computation on
mapper Pi+1. This case is very similar to Case B. Hence, we do not analyze
it separately in the further discussion.
To demonstrate lack of dominance of the above communication schedule

structures we will calculate the amount of load processed on two mappers
and transferred to two reducers (m = r = 2) in time T . Note that since
execution time of reducers is equal, minimization of T is equivalent to the
minimization of the whole schedule length.
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Figure 5: Many reducers exemplary read schedule structures. a) case A,
reducers read in parallel, b) case B, reducers read sequentially, c) reducers
share bandwidth.

Case A. We can distinguish two sub-cases (Fig.6). In the first one (case
A.1) there is an idle time in the communications with P2. This means that
reading results from P1 is longer than from P2. Hence α1 ≥ α2. In the
second sub-case (case A.2) communication with P2 is longer than with P1,
and α1 ≤ α2.
Case A.1. In the first sub-case we have conditions:

α1(A1 + γC/2) = α2A2 + S (30)

S + α1(A1 + γC) + α2γC/2 = T (31)

α1 ≥ α2 (32)

From which we obtain:

α1 =
TA2 − A2S + γCS/2

A1A2 + A1γC/2 + A2γC + γ2C2/4
(33)

α2 =
TA1 + TγC/2 − 2A1S − 3/2γCS

A1A2 + A1γC/2 + A2γC + γ2C2/4
(34)
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Figure 6: Special cases of the first reducers read orders. a) Case A.1,b) Case
A.2.

α1 + α2 =
T (A1 + A2 + γC/2) − S(2A1 + A2) − γCS

A1A2 + A1γC/2 + A2γC + γ2C2/4
, (35)

with additional requirement α1 ≥ α2 equivalent to:

T (A2 − A1 − γC/2) ≥ A2S − 2A1S − 2γCS (36)

Case A.2. In the second sub-case we have conditions:

α1(A1 + γC/2) = α2A2 + S (37)

2S + α2(A2 + γC) = T (38)

α1 ≤ α2 (39)

From which we obtain:

α1 =
TA2 − A2S + γCS

A1A2 + A1γC + A2γC/2 + γ2C2/2
(40)

α2 =
TA1 + TγC/2 − 2A1S − γCS

A1A2 + A1γC + A2γC/2 + γ2C2/2
(41)

α1 + α2 =
T (A1 + A2 + γC/2) − S(2A1 + A2)

A1A2 + A1γC + A2γC/2 + γ2C2/2
, (42)

with additional requirement α1 ≤ α2 equivalent to:

T (A2 − A1 − γC/2) ≤ A2S − 2A1S − 4γCS/2 (43)

At least one of these conditions (36), (43) is always satisfied. If both are
satisfied, then the load amounts given by (35) and (42) are equal.
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Case B. In the current schedule structure we have conditions (cf. Fig.5b):

α1(A1 + 2γC/2) = α2A2 + S (44)

2S + α2(A2 + 2γC/2) = T (45)

From which we obtain:

α1 =
TA2 − A2S + γCS

A1A2 + A1γC + A2γC + γ2C2
(46)

α2 =
TA1 + TγC − 2A1S − 2γCS

A1A2 + A1γC + A2γC + γ2C2
(47)

α1 + α2 =
T (A1 + A2 + γC) − S(2A1 + A2) − γCS

A1A2 + A1γC + A2γC + γ2C2
. (48)

Let us now compare the amounts of load processed in time T in the above
analyzed schedule structures. By comparing (35), (42), (48) we can see that
none of the schedule structures always results in the biggest processing load
for the given time T . Thus, no single communication schedule structure
seems to be optimum in all cases. To build the optimum schedule a more
general tool, possibly incorporating all possible structures, must be applied.
On the other hand, if we concentrate only on the part of (35), (42), (48)
which grows with T , then it can be concluded that for very big T (which
may result from a need for processing very big loads) the load processed in
cases A.1, A.2 dominate case B. For example, the difference between (35)
and (48) in the part proportional to T is

T (A1+A2+γC/2)
A1A2+A1γC/2+A2γC+γ2C2/4

− T (A1+A2+γC)
A1A2+A1γC+A2γC+γ2C2 =

TγC/2(A2

1
+3/2A1γC+A2γC/2+γ2C2/2)

(A1A2+A1γC/2+A2γC+γ2C2/4)(A1A2+A1γC+A2γC+γ2C2)
> 0 (49)

Similar inequality can be derived for (42) and (48). Therefore, in the further
discussion we will be using schedules based on case A.

5.2 Load Partitioning

In this section we propose methods of load partitioning between mappers
taking into account many reducers. Since reducers have equal execution time
tR we concentrate on minimizing length of the partial schedule comprising
mapper computations, and mapper to reducer transmissions. Features of the
methods are discussed at the end of this section.

17



mapper

mapper

mapper

mapper computation

1st reducer
computation

2nd reducer
computation

r-th reducer
computation

P1

Pi

Pi+1

Pm

a1A1

aiAi

ai+1Ai+1

amAm

a1gCr/ a1gCr/

a gi+1 C r/ a gi+1 C r/

a gm C r/ a gm C r/ a gm C r/

time

S

S

S

S

. . .

...

...

...

...

. . .
. . .

. . .

a gi C r/ a gi C r/

Figure 7: A schedule for many reducers. The first method.

The first method assumes simple limits on communication bandwidth
and is a natural extension of the method for a single reducer. Schedule
structure is shown in Fig.7. In this method the end of the read by the
first reducer from Pi coincides with mapper completion time on Pi+1. The
method of calculating α1, . . . , αm for r = 1 presented in Section 4.2 can be
applied here with using γC/r in place of γC. None of the mappers is read
simultaneously by many reducers, and no reducer reads outputs from many
mappers in parallel. The bandwidth of mappers’ network output interfaces,
and reducers’ network input interfaces are not shared. Hence, we assume
constant communication rate C. Yet, the bisection width limitations are
ignored. Schedule length is

T =
m

max
i=1

{iS + αi(Ai + γC) + γC/r
m

∑

j=i+1

αj} + tR (50)

The second method more carefully represents bandwidth sharing in trans-
ferring the results from mappers to reducers (see Fig.8). Let t1 ≤ t2 ≤ . . . ≤
tm be the time moments when mappers P1, . . . , Pm finish computations, re-
spectively. Let tm+1 be the time moment when all mapper to reducer commu-
nications finish. We will denote by βijk the amount of results read in interval
[ti, ti+1) from mapper j by reducer k. The partitioning of the reducer reads
in the time intervals [ti, ti+1] can be found from the following linear program:

minimize tm+1 (51)

iS + Aiαi = ti for i = 1, . . . , m (52)

C
i

∑

j=1

βijk ≤ ti+1 − ti for i = 1, . . . , m, k=1, . . . , r (53)
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Figure 8: A schedule for many reducers. The second method.

C
r

∑

k=1

βijk ≤ ti+1 − ti for i = 1, . . . , m, j =1, . . . , i, (54)

C
i

∑

j=1

r
∑

k=1

βijk ≤ l(ti+1 − ti) for i = 1, . . . , m (55)

βijk = 0 for i = 1, . . . , m−1, j= i + 1, . . . , m, k = 1, . . . , r (56)
m

∑

i=1

βijk =
γ

r
αj for k = 1, . . . , r, j = 1, . . . , m (57)

m
∑

i=1

αi = V (58)

In the above linear program αi, βijk, ti are variables. We minimize tm+1 which
is length of the schedule from the start until the end of mapper-reducer com-
munications. Equations (52) guarantee that communications may start after
mapper computations. By (53), (54) computations finish in the FIFO order.
Inequalities (53) – (56) ensure a feasible schedule of the communications in
each interval. In particular, (53) guarantee that no reducer communicates
longer than the communication interval. Similarly, by (54) no mapper com-
municates longer than the communication interval. By (55) the total used
bandwidth in mapper-reducer communications is equivalent to at most l si-
multaneous connections with communication rate C. This is equivalent to
bisection width l

C
. Inequalities (56) guarantee that no data is read from

mappers which have not completed their computations. By equations (57)
each reducer reads all its inputs, and all work is done by (58). The number
of variables in the above LP is rm2 + 2m + 1.
A feasible communication schedule can be built for each interval [ti, ti+1)
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Figure 9: A schedule for many reducers. The third method. Notation: i → j
- reducer j reads mapper i. Here m = r = 4, l = 2.

in which communication from mapper j to reducer k of length βijkC is made
using the so-called two-stage method for problem R|pmtn|Cmax [5, 7].

The third method simplifies the second approach (see Fig.9). It pre-
sumes a simple assignment of reducer communications to time intervals. This
simplification allows for introducing bisection width limitation as well as se-
quential read of mapper results by the reducers. We assume here that in
each interval [ti, ti+1] complete load transfers are made (i.e. complete set
of results of size γαj/r is read from any mapper Pj), any mapper and any
reducer appears at most once. All reducers read mappers in the same order:
P1, P2, . . . , Pm. Also the order of reducer read operations on the mappers
is the same for all read mappers. Thus, it can be said that reducer read
operations are ordered as in the permutation flowshop. New communication
operations are started as soon as mappers finish their computations, and
sufficient number of communication channels (not exceeding bisection width
l) is available.
Let us analyze the number of necessary communication intervals. If the

number l of channels which can be simultaneously opened is at least equal
the number of reducers r, then the number of intervals necessary to perform
m reads by each of r reducers is m+ r−1. On the other hand, if the number
of simultaneous reads l < r then after opening l read channels by l reducers
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the (l + 1)-th reducer shall wait until completion of the read operation of
the first reducer from the m-th mapper. This requires m − l additional
communications for reducer 1 with mappers Pl+1, . . . , Pm. Consequently,
m − l idle intervals appear in the reads from each mapper. With the end of
each interval [tm, tm+1], . . . , [tm+l, tm+l+1] a new read operation is started by
reducers l + 1, . . . , l + l. Thus, after m − l idle intervals, read operation are
performed in the following l intervals. Sequences of m − l idle intervals are
inserted in the schedule d r

l
e − 1 times. Overall there are (d r

l
e − 1)(m − l) +

m+r−1 intervals in the communication schedule. For simplicity of notation
let us introduce function itv(i, j) which returns the number of the interval in
which reducer j reads output of mapper i (counting starts with value 1 for
interval [t1, t2]). Values of itv(i, j) can be calculated as follows:

itv(i, j) =
(⌈

j

l

⌉

− 1
)

m + i + (j − 1) mod l (59)

for i = 1, . . . , m, j = 1, . . . , r. Let vti(i) be the set of read operations per-
formed in interval i, i.e.

vti(i) = {a : itv(a, b) = i, b ∈ {1, . . . , r}} (60)

Values of vti(i) can be tabulated in O(mr) time. The partition of the load
can be calculated from the following linear program:

minimize titv(m,r)+1 (61)

iS + Aiαi = ti for i = 1, . . . , m (62)

γC

r
αk ≤ ti+1 − ti for i = 1, . . . , itv(m, r), k ∈ vti(i) (63)

m
∑

i=1

αi = V (64)

In the above linear program αi, ti are variables. We minimize the completion
time of the last communication titv(m,r)+1. By inequalities (62) computations
finish before starting reads from the mappers. Constraints (63) guarantee
that all communications fit in the time intervals where they are assigned.
LP (61)-(64) has itv(m, r) + 1 + m variables which is O(mr/l), and at most
m + 1 + itv(m, r)l constraints which is O(mr).
The above linear program can be further simplified. Let us remind that

reducers read equal size outputs from each mapper. For example, all commu-
nications (i, j) from fixed Pi to reducers j = 1, . . . , r have (approximately) the
same size γαi/r. Consequently, intervals [tma+i, tma+i+1], and [tmb+i, tmb+i+1]
have equal length because they comprise read operations from the same map-
pers, for some positive integers i, a < b such that mb + i ≤ itv(m, r). The
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block of intervals [tm, tm+1], . . . , [t2m−1, t2m] is repeated (d r
l
e−1) times. After

them (r−1) mod l intervals follow which repeat the length of some earlier in-
tervals. More precisely, the distance between titv(m,(d r

l
e−1)l+1) and titv(m,r)+1 is

equal to the distance between tm and tm+((r−1) mod l)+1. Consequently, length
of the schedule until the end of mapper-reducer communications is

tm + (d
r

l
e − 1)(t2m − tm) + (tm+((r−1) mod l)+1 − tm) = (65)

= (d
r

l
e − 1)(t2m − tm) + tm+((r−1) mod l)+1 (66)

Value of variable tam+i for 1 < a ≤ d r
l
e− 1, and 0 ≤ i < m can be calculated

as tm + a(t2m − tm) + (tm+i − tm) = a(t2m − tm) + tm+i. Hence, LP (61)-(64)
can be reduced to

minimize (d
r

l
e − 1)(t2m − tm) + tm+((r−1) mod l)+1 (67)

iS + Aiαi = ti for i = 1, . . . , m (68)

γC

r
αk ≤ ti+1 − ti for i = 1, . . . , 2m, k ∈ vti(i) (69)

m
∑

i=1

αi = V (70)

The functions of the constraints in the above LP are the same as in the earlier
one. The number of variables is 3m, the number of constraints is at most
2ml + m + 1. The objective function (67) reduces to tm+r if r ≤ l.

The above three methods have advantages and disadvantages. The first
model is mathematically simple and easy to implement in practice. On the
other hand it ignores network bisection width. The second model is more
precise in representing bandwidth limitations, but it uses more demanding
mathematical tools (note big number of variables in LP (51)-(58)) and its
results are hard to implement in practice (because a lot of information must
be distributed, and schedule of many processors must be coordinated, i.e.
synchronized). Moreover, in the second method all the reducers finish com-
putations simultaneously, and consequently simultaneously attempt to store
their results in the distributed file system. These final reducer writing oper-
ations may be delayed by limited performance of the distributed file system.
The third method is a compromise between the earlier two: it has small
computational demands (smaller number of variables in LP (67)-(70)), takes
network bisection width into account. On the other hand, it makes strong
(though not unrealistic) assumptions on the structure of the schedule, re-
quires distributing some scheduling information (yet less than in the second
method) and coordination. Moreover, since reducer computations start times
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are spread in time, then also reducer writes are spread in time to avoid bi-
section width limitation.

6 Conclusions

In this report we analyzed dominance properties of the schedules for divisible
MapReduce computations. It has been show that for a single reducer acti-
vating faster mapper first, with sequential FIFO reducer reads is optimum
schedule structure. Unfortunately, it is also shown that for many reducers
the schedule dominance is dependent on the parameters of the system. Three
methods of calculating load partitioning have been proposed.
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